
calculatoratoz.com

unitsconverters.com

Load and Strength Characteristics Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Load and Strength Characteristics Formulas

Load and Strength Characteristics \mathbb{A}

1) Imaginary Force at Center of Gravity of Bolted Joint given Primary Shear Force
$f \times P=\left(P_{1}^{\prime}\right) \cdot n$
Open Calculator
ex $12000 \mathrm{~N}=3000 \mathrm{~N} \cdot 4$
2) Number of Bolts given Primary Shear Force
$f_{x} n=\frac{P}{P_{1}^{\prime}}$
Open Calculator
ex $4=\frac{12000 \mathrm{~N}}{3000 \mathrm{~N}}$
3) Pre Load in Bolt given Amount of Compression in Parts Joined by Bolt \boxed{Z}
$f_{\mathrm{x}} \mathrm{P}_{\mathrm{i}}=\delta_{\mathrm{c}} \cdot \mathrm{k}$
ex $16500 \mathrm{~N}=11 \mathrm{~mm} \cdot 1500 \mathrm{~N} / \mathrm{mm}$
4) Pre Load in Bolt given Elongation of Bolt
$f \mathrm{f} \quad \mathrm{P}_{\mathrm{i}}=\delta_{\mathrm{b}} \cdot\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right)$

Open Calculator

ex $15850 \mathrm{~N}=0.05 \mathrm{~mm} \cdot 3.17 \mathrm{E}^{\wedge} 5 \mathrm{~N} / \mathrm{mm}$
5) Pre Load in Bolt given Wrench Torque
$f \times \mathrm{P}_{\mathrm{i}}=\frac{\mathrm{M}_{\mathrm{t}}}{0.2 \cdot \mathrm{~d}}$
Open Calculator
ex $16500 \mathrm{~N}=\frac{49500 \mathrm{~N}^{*} \mathrm{~mm}}{0.2 \cdot 15 \mathrm{~mm}}$
6) Resultant Load on Bolt given Pre Load and External Load
$f_{\mathrm{x}} \mathrm{P}_{\mathrm{b}}=\mathrm{P}_{\mathrm{i}}+\Delta \mathrm{P}$
Open Calculator
ex $19000 \mathrm{~N}=16500 \mathrm{~N}+2500 \mathrm{~N}$
7) Stiffness of Bolt given Thickness of Parts Joined by Bolt
$\mathrm{fx}_{\mathrm{x}}\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right)=\frac{\pi \cdot \mathrm{d}^{2} \cdot \mathrm{E}}{4 \cdot l}$
ex $318086.3 \mathrm{~N} / \mathrm{mm}=\frac{\pi \cdot(15 \mathrm{~mm})^{2} \cdot 207000 \mathrm{~N} / \mathrm{mm}^{2}}{4 \cdot 115 \mathrm{~mm}}$
8) Tensile Force on Bolt given Maximum Tensile Stress in Bolt
$\mathrm{fx} \mathrm{P}_{\mathrm{tb}}=\sigma \mathrm{t}_{\max } \cdot \frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{c}}^{2}$
Open Calculator
ex $9952.566 \mathrm{~N}=88 \mathrm{~N} / \mathrm{mm}^{2} \cdot \frac{\pi}{4} \cdot(12 \mathrm{~mm})^{2}$
9) Tensile Force on Bolt in Shear
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}_{\mathrm{tb}}=\pi \cdot \mathrm{d}_{\mathrm{c}} \cdot \mathrm{h} \cdot \frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{f}_{\mathrm{s}}}$
Open Calculator
ex $9997.804 \mathrm{~N}=\pi \cdot 12 \mathrm{~mm} \cdot 6 \mathrm{~mm} \cdot \frac{132.6 \mathrm{~N} / \mathrm{mm}^{2}}{3}$
10) Tensile Force on Bolt in Tension
$f \mathrm{x} \mathrm{P}_{\mathrm{tb}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{c}}^{2} \cdot \frac{\mathrm{~S}_{\mathrm{yt}}}{\mathrm{f}_{\mathrm{s}}}$
Open Calculator
ex $10009.11 \mathrm{~N}=\frac{\pi}{4} \cdot(12 \mathrm{~mm})^{2} \cdot \frac{265.5 \mathrm{~N} / \mathrm{mm}^{2}}{3}$
11) Thickness of Parts Held Together by Bolt given Stiffness of Bolt
$\mathrm{f} \times \mathrm{l}=\frac{\pi \cdot \mathrm{d}^{2} \cdot \mathrm{E}}{4 \cdot\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right)}$
ex $115.3941 \mathrm{~mm}=\frac{\pi \cdot(15 \mathrm{~mm})^{2} \cdot 207000 \mathrm{~N} / \mathrm{mm}^{2}}{4 \cdot 3.17 \mathrm{E}^{\wedge} 5 \mathrm{~N} / \mathrm{mm}}$
12) Wrench Torque Required to Create Required Pre Load
$f \mathrm{f} \mathrm{M}_{\mathrm{t}}=0.2 \cdot \mathrm{P}_{\mathrm{i}} \cdot \mathrm{d}$

ex $49500 \mathrm{~N} * \mathrm{~mm}=0.2 \cdot 16500 \mathrm{~N} \cdot 15 \mathrm{~mm}$

13) Young's Modulus of Bolt given Stiffness of Bolt
$\mathrm{fx} \mathrm{E}=\frac{\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right) \cdot \mathrm{l} \cdot 4}{\mathrm{~d}^{2} \cdot \pi}$
ex $206293.1 \mathrm{~N} / \mathrm{mm}^{2}=\frac{3.17 \mathrm{E}^{\wedge} 5 \mathrm{~N} / \mathrm{mm} \cdot 115 \mathrm{~mm} \cdot 4}{(15 \mathrm{~mm})^{2} \cdot \pi}$

Variables Used

- $\Delta \mathbf{P}$ Load due to External Force on Bolt (Newton)
- d Nominal Bolt Diameter (Millimeter)
- $\mathbf{d}_{\mathbf{c}}$ Core Diameter of Bolt (Millimeter)
- δ_{b} Elongation of Bolt (Millimeter)
- E Modulus of Elasticity of Bolt (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{s}}$ Factor of Safety of Bolted Joint
- h Height of Nut (Millimeter)
- k Combined Stiffness of Bolt (Newton per Millimeter)
- $\mathbf{k}_{\mathbf{b}}$ 'Stiffness of Bolt (Newton per Millimeter)
- I Total Thickness of Parts held together by Bolt (Millimeter)
- $\mathbf{M}_{\mathbf{t}}$ Wrench Torque for Bolt Tightening (Newton Millimeter)
- \mathbf{n} Number of Bolts in Bolted Joint
- P Imaginary Force on Bolt (Newton)
- \mathbf{P}_{1} ' Primary Shear Force on Bolt (Newton)
- $\mathbf{P}_{\mathbf{b}}$ Resultant Load on Bolt (Newton)
- $\mathbf{P}_{\mathbf{i}}$ Pre Load in Bolt (Newton)
- $\mathbf{P}_{\text {tb }}$ Tensile Force in Bolt (Newton)
- $\mathbf{S}_{\mathbf{s y}}$ Shear Yield Strength of Bolt (Newton per Square Millimeter)
- $\mathbf{S}_{\mathbf{y t}}$ Tensile Yield Strength of Bolt (Newton per Square Millimeter)
- $\boldsymbol{\delta}_{\mathbf{c}}$ Amount of Compression of Bolted Joint (Millimeter)
- $\boldsymbol{\sigma} \mathbf{t}_{\text {max }}$ Maximum Tensile Stress in Bolt (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Torque in Newton Millimeter ($\mathrm{N}^{*} \mathrm{~mm}$)

Torque Unit Conversion

- Measurement: Stiffness Constant in Newton per Millimeter (N/mm) Stiffness Constant Unit Conversion
- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Joint Analysis Formulas $工$

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

