Beam Moments Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 24 Beam Moments Formulas

Beam Moments

1) Bending Moment of Cantilever Beam Subjected to UDL at Any Point from Free End \subseteq
$\mathrm{fx} \mathrm{M}=\left(\frac{\mathrm{w} \cdot \mathrm{x}^{2}}{2}\right)$
ex $57.0037 \mathrm{kN}{ }^{*} \mathrm{~m}=\left(\frac{67.46 \mathrm{kN} / \mathrm{m} \cdot(1300 \mathrm{~mm})^{2}}{2}\right)$
2) Bending Moment of Simply Supported Beam Carrying UDL
$f \mathrm{fx}=\left(\frac{\mathrm{w} \cdot \mathrm{L} \cdot \mathrm{x}}{2}\right)-\left(\mathrm{w} \cdot \frac{\mathrm{x}^{2}}{2}\right)$
Open Calculator \leftrightarrows
ex
$57.0037 \mathrm{kN} *_{\mathrm{m}}=\left(\frac{67.46 \mathrm{kN} / \mathrm{m} \cdot 2600 \mathrm{~mm} \cdot 1300 \mathrm{~mm}}{2}\right)-\left(67.46 \mathrm{kN} / \mathrm{m} \cdot \frac{(1300 \mathrm{~mm})^{2}}{2}\right)$
3) Bending Moment of Simply Supported Beam Subjected to Point Load at Mid-Point
$f \mathrm{x} M=\left(\frac{\mathrm{P} \cdot \mathrm{x}}{2}\right)$
ex $57.2 \mathrm{kN}^{*} \mathrm{~m}=\left(\frac{88 \mathrm{kN} \cdot 1300 \mathrm{~mm}}{2}\right)$
4) Fixed End Moment at Left Support Carrying Right Angled Triangular Load at Right Angled End A드
$f \mathrm{FEM}=\frac{\mathrm{q} \cdot\left(\mathrm{L}^{2}\right)}{20}$
$\operatorname{ex} 4.394 \mathrm{kN} * \mathrm{~m}=\frac{13 \mathrm{kN} / \mathrm{m} \cdot\left((2600 \mathrm{~mm})^{2}\right)}{20}$
5) Fixed End Moment at Left Support with Couple at Distance A
$\mathrm{fx} \mathrm{FEM}=\frac{\mathrm{M}_{\mathrm{c}} \cdot \mathrm{b} \cdot(2 \cdot \mathrm{a}-\mathrm{b})}{\mathrm{L}^{2}}$
Open Calculator ©
ex $18.26368 \mathrm{kN}^{*} \mathrm{~m}=\frac{85 \mathrm{kN}^{*} \mathrm{~m} \cdot 350 \mathrm{~mm} \cdot(2 \cdot 2250 \mathrm{~mm}-350 \mathrm{~mm})}{(2600 \mathrm{~mm})^{2}}$
6) Fixed End Moment at Left Support with Point Load at Certain Distance from Left Support
$f \times \mathrm{FEM}=\left(\frac{\mathrm{P} \cdot\left(\mathrm{b}^{2}\right) \cdot \mathrm{a}}{\mathrm{L}^{2}}\right)$
ex $3.588018 \mathrm{kN} * \mathrm{~m}=\left(\frac{88 \mathrm{kN} \cdot\left((350 \mathrm{~mm})^{2}\right) \cdot 2250 \mathrm{~mm}}{(2600 \mathrm{~mm})^{2}}\right)$
7) Fixed End Moment of Fixed Beam Carrying Three Equi-spaced Point Loads
$\mathrm{fx} \mathrm{FEM}=\frac{15 \cdot \mathrm{P} \cdot \mathrm{L}}{48}$
Open Calculator ©
ex $71.5 \mathrm{kN} * \mathrm{~m}=\frac{15 \cdot 88 \mathrm{kN} \cdot 2600 \mathrm{~mm}}{48}$
8) Maximum Bending Moment of Cantilever Beam Subjected to Point Load at Free End

$f \mathrm{x} M=\mathrm{P} \cdot \mathrm{L}$
ex $228.8 \mathrm{kN} * \mathrm{~m}=88 \mathrm{kN} \cdot 2600 \mathrm{~mm}$
9) Maximum Bending Moment of Cantilever Subject to UDL over Entire Span
$\mathrm{fx} \mathrm{M}=\frac{\mathrm{w} \cdot \mathrm{L}^{2}}{2}$
Open Calculator
ex $228.0148 \mathrm{kN} * \mathrm{~m}=\frac{67.46 \mathrm{kN} / \mathrm{m} \cdot(2600 \mathrm{~mm})^{2}}{2}$
10) Maximum Bending Moment of Overhanging Beam Subjected to Concentrated Load at Free End
$f \mathrm{f} M=-\mathrm{P} \cdot \mathrm{l}_{0}$
ex $-132000 \mathrm{kN}^{*} \mathrm{~m}=-88 \mathrm{kN} \cdot 1500 \mathrm{~mm}$

Open Calculator 〔
11) Maximum Bending Moment of Simply Supported Beam with Point Load at Distance 'a' from Left Support

$$
f \mathrm{x} M=\frac{\mathrm{P} \cdot \mathrm{a} \cdot \mathrm{~b}}{\mathrm{~L}}
$$

ex
$26.65385 \mathrm{kN}^{*} \mathrm{~m}=\frac{88 \mathrm{kN} \cdot 2250 \mathrm{~mm} \cdot 350 \mathrm{~mm}}{2600 \mathrm{~mm}}$
12) Maximum Bending Moment of Simply Supported Beam with Uniformly Distributed Load
$f \mathrm{~F} M=\frac{\mathrm{w} \cdot \mathrm{L}^{2}}{8}$
ex $57.0037 \mathrm{kN}^{*} \mathrm{~m}=\frac{67.46 \mathrm{kN} / \mathrm{m} \cdot(2600 \mathrm{~mm})^{2}}{8}$
13) Maximum Bending Moment of Simply Supported Beams with Point Load at Centre
$f \mathrm{fx}=\frac{\mathrm{P} \cdot \mathrm{L}}{4}$
ex $57.2 \mathrm{kN}^{*} \mathrm{~m}=\frac{88 \mathrm{kN} \cdot 2600 \mathrm{~mm}}{4}$
14) Maximum Bending Moment of Simply Supported Beams with Uniformly Varying Load E

$$
\mathrm{fx} M=\frac{\mathrm{q} \cdot \mathrm{~L}^{2}}{9 \cdot \sqrt{3}}
$$

ex
$5.637505 \mathrm{kN} * \mathrm{~m}=\frac{13 \mathrm{kN} / \mathrm{m} \cdot(2600 \mathrm{~mm})^{2}}{9 \cdot \sqrt{3}}$
15) Moment on Fixed End of Fixed Beam carrying Two Equi Spaced Point Loads
$f \mathrm{FEM}=\frac{2 \cdot \mathrm{P} \cdot \mathrm{L}}{9}$
ex $50.84444 \mathrm{kN} * \mathrm{~m}=\frac{2 \cdot 88 \mathrm{kN} \cdot 2600 \mathrm{~mm}}{9}$
16) Moment on Fixed End of Fixed Beam Carrying Uniform Varying Load
$f \mathrm{FEM}=\frac{5 \cdot \mathrm{q} \cdot\left(\mathrm{L}^{2}\right)}{96}$
ex $4.577083 \mathrm{kN}^{*} \mathrm{~m}=\frac{5 \cdot 13 \mathrm{kN} / \mathrm{m} \cdot\left((2600 \mathrm{~mm})^{2}\right)}{96}$
17) Moment on Fixed End of Fixed Beam having Point Load at Center

匹

fx $\mathrm{FEM}=\frac{\mathrm{P} \cdot \mathrm{L}}{8}$
ex $28.6 \mathrm{kN} * \mathrm{~m}=\frac{88 \mathrm{kN} \cdot 2600 \mathrm{~mm}}{8}$
18) Moment on Fixed End of Fixed Beam having UDL over Entire Length
$f \times \mathrm{FEM}=\frac{\mathrm{w} \cdot\left(\mathrm{L}^{2}\right)}{12}$
Open Calculator
ex $38.00247 \mathrm{kN}^{*} \mathrm{~m}=\frac{67.46 \mathrm{kN} / \mathrm{m} \cdot\left((2600 \mathrm{~mm})^{2}\right)}{12}$

Curved Beams

19) Bending Moment when Stress is Applied at Point in Curved Beam
$f \mathrm{fx}=\left(\frac{\mathrm{S} \cdot \mathrm{A} \cdot \mathrm{R}}{1+\left(\frac{\mathrm{y}}{\mathrm{Z} \cdot(\mathrm{R}+\mathrm{y})}\right)}\right)$
ex $57 \mathrm{kN} *_{\mathrm{m}}=\left(\frac{33.25 \mathrm{MPa} \cdot 0.04 \mathrm{~m}^{2} \cdot 50 \mathrm{~mm}}{1+\left(\frac{25 \mathrm{~mm}}{2.0 \cdot(50 \mathrm{~mm}+25 \mathrm{~mm})}\right)}\right)$
20) Cross-Sectional Area when Stress is Applied at Point in Curved Beam
$f \mathrm{fx}=\left(\frac{\mathrm{M}}{\mathrm{S} \cdot \mathrm{R}}\right) \cdot\left(1+\left(\frac{\mathrm{y}}{\mathrm{Z} \cdot(\mathrm{R}+\mathrm{y})}\right)\right)$
Open Calculator ©
ex $0.04 \mathrm{~m}^{2}=\left(\frac{57 \mathrm{kN} * \mathrm{~m}}{33.25 \mathrm{MPa} \cdot 50 \mathrm{~mm}}\right) \cdot\left(1+\left(\frac{25 \mathrm{~mm}}{2.0 \cdot(50 \mathrm{~mm}+25 \mathrm{~mm})}\right)\right)$
21) Stress at Point for Curved Beam as defined in Winkler-Bach Theory
$\mathrm{fx} \mathrm{S}=\left(\frac{\mathrm{M}}{\mathrm{A} \cdot \mathrm{R}}\right) \cdot\left(1+\left(\frac{\mathrm{y}}{\mathrm{Z} \cdot(\mathrm{R}+\mathrm{y})}\right)\right)$
ex $33.25 \mathrm{MPa}=\left(\frac{57 \mathrm{kN}^{*} \mathrm{~m}}{0.04 \mathrm{~m}^{2} \cdot 50 \mathrm{~mm}}\right) \cdot\left(1+\left(\frac{25 \mathrm{~mm}}{2.0 \cdot(50 \mathrm{~mm}+25 \mathrm{~mm})}\right)\right)$

Flitched Beam

22) Equivalent Width of Flitched Beam
$\mathrm{fx}_{\mathrm{x}} \mathrm{w}_{\mathrm{f}}=\mathrm{m} \cdot \mathrm{T}_{\text {Beam }}$
ex $3375 \mathrm{~mm}=15 \cdot 225 \mathrm{~mm}$
23) Modular Ratio for Equivalent Width of Flitched Beam
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{m}=\frac{\mathrm{w}_{\mathrm{f}}}{\mathrm{T}_{\text {Beam }}}}$
Open Calculator
ex $15=\frac{3375 \mathrm{~mm}}{225 \mathrm{~mm}}$
24) Thickness of Steel given Equivalent Width of Flitched Beam
$\mathrm{fx} \mathrm{T}_{\text {Beam }}=\frac{\mathrm{w}_{\mathrm{f}}}{\mathrm{m}}$
ex $225 \mathrm{~mm}=\frac{3375 \mathrm{~mm}}{15}$

Variables Used

- a Distance from Support A (Millimeter)
- A Cross Sectional Area (Square Meter)
- b Distance from Support B (Millimeter)
- FEM Fixed End Moment (Kilonewton Meter)
- L Length of Beam (Millimeter)
- $\mathbf{I}_{\mathbf{0}}$ Length of Overhang (Millimeter)
- m Modular Ratio
- M Bending Moment (Kilonewton Meter)
- $\mathbf{M}_{\mathbf{c}}$ Moment of Couple (Kilonewton Meter)
- P Point Load (Kilonewton)
- q Uniformly Varying Load (Kilonewton per Meter)
- R Radius of Centroidal Axis (Millimeter)
- S Stress (Megapascal)
- TBeam Beam Thickness (Millimeter)
- w Load per Unit Length (Kilonewton per Meter)
- $\mathbf{w}_{\mathbf{f}}$ Equivalent Width of Flitched Beam (Millimeter)
- x Distance x from Support (Millimeter)
- y Distance from Neutral Axis (Millimeter)
- Z Cross-Section Property

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Meter (m^{2}) Area Unit Conversion
- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Surface Tension in Kilonewton per Meter (kN/m) Surface Tension Unit Conversion
- Measurement: Moment of Force in Kilonewton Meter (kN*m) Moment of Force Unit Conversion
- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Mohr's Circle of Stresses Formulas
- Beam Moments Formulas
- Bending Stress Formulas
- Combined Axial and Bending Loads Formulas
- Elastic Stability of Columns Formulas
- Principal Stress Formulas
- Slope and Deflection Formulas
- Strain Energy Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

