
calculatoratoz.com

unitsconverters.com

## Torsion Equation of Circular Shafts Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

## List of 17 Torsion Equation of Circular Shafts Formulas

## Torsion Equation of Circular Shafts ©

1) Angle of Twist with known Shear Strain at Outer Surface of Shaft
$\mathbf{f x} \theta_{\text {Circularshafts }}=\frac{\eta \cdot L_{\text {shaft }}}{\mathrm{R}}$
Open Calculator
ex $72.86364 \mathrm{rad}=\frac{1.75 \cdot 4.58 \mathrm{~m}}{110 \mathrm{~mm}}$
2) Angle of Twist with known Shear Stress in Shaft
$f \mathbf{x} \theta_{\text {Torsion }}=\frac{\tau \cdot \mathrm{L}_{\text {shaft }}}{\mathrm{R} \cdot \mathrm{G}_{\text {Torsion }}}$
Open Calculator
ex $0.187364 \mathrm{rad}=\frac{180 \mathrm{MPa} \cdot 4.58 \mathrm{~m}}{110 \mathrm{~mm} \cdot 40 \mathrm{GPa}}$
3) Angle of Twist with known Shear Stress induced at Radius r from Center of Shaft
$\mathbf{f x} \theta_{\text {Torsion }}=\frac{\mathrm{L}_{\text {shaft }} \cdot \tau}{\mathrm{R} \cdot \mathrm{G}_{\text {Torsion }}}$
Open Calculator
ex $0.187364 \mathrm{rad}=\frac{4.58 \mathrm{~m} \cdot 180 \mathrm{MPa}}{110 \mathrm{~mm} \cdot 40 \mathrm{GPa}}$
4) Length of Shaft with known Shear Strain at Outer Surface of Shaft
$\mathrm{fx} \mathrm{L}_{\text {shaft }}=\frac{\mathrm{R} \cdot \theta_{\text {Circularshafts }}}{\eta}$
ex $4.525714 \mathrm{~m}=\frac{110 \mathrm{~mm} \cdot 72 \mathrm{rad}}{1.75}$

Open Calculator
5) Length of Shaft with known Shear Stress induced at Radius r from Center of Shaft
$f \times L_{\text {shaft }}=\frac{\mathrm{R} \cdot \mathrm{G}_{\text {Torsion }} \cdot \theta_{\text {Torsion }}}{\tau}$
$\mathrm{ex} 4.571111 \mathrm{~m}=\frac{110 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot 0.187 \mathrm{rad}}{180 \mathrm{MPa}}$

Open Calculator
6) Length of Shaft with known Shear Stress induced at Surface of Shaft
$f \times L_{\text {shaft }}=\frac{\mathrm{R} \cdot \mathrm{G}_{\text {Torsion }} \cdot \theta_{\text {Torsion }}}{\tau}$
ex $4.571111 \mathrm{~m}=\frac{110 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot 0.187 \mathrm{rad}}{180 \mathrm{MPa}}$
7) Modulus of Rigidity of material of Shaft using Shear Stress-induced at Surface of Shaft
$\mathrm{fx} \mathrm{G}_{\text {Torsion }}=\frac{\tau \cdot \mathrm{L}_{\text {shaft }}}{\mathrm{R} \cdot \theta_{\text {Torsion }}}$
ex $40.07778 \mathrm{GPa}=\frac{180 \mathrm{MPa} \cdot 4.58 \mathrm{~m}}{110 \mathrm{~mm} \cdot 0.187 \mathrm{rad}}$
8) Modulus of Rigidity of Shaft if Shear Stress-induced at Radius 'r' from Center of Shaft ©
$f x \mathrm{G}_{\text {Torsion }}=\frac{\mathrm{L}_{\text {shaft }} \cdot \tau}{\mathrm{R} \cdot \theta_{\text {Torsion }}}$
Open Calculator
ex $40.07778 \mathrm{GPa}=\frac{4.58 \mathrm{~m} \cdot 180 \mathrm{MPa}}{110 \mathrm{~mm} \cdot 0.187 \mathrm{rad}}$
9) Radius of Shaft if Shear Stress induced at Radius r from Center of Shaft $\boxed{\square}$
$\mathrm{fx}_{\mathrm{x}} \mathrm{R}=\frac{\mathrm{r} \cdot \tau}{\mathrm{T}_{\mathrm{r}}}$
Open Calculator
ex $109.8 \mathrm{~mm}=\frac{0.122 \mathrm{~m} \cdot 180 \mathrm{MPa}}{200 \mathrm{MPa}}$
10) Radius of Shaft using Shear Strain at Outer Surface of Shaft
$\mathrm{fx} \mathrm{R}=\frac{\eta \cdot \mathrm{L}_{\text {shaft }}}{\theta_{\text {Circularshafts }}}$
Open Calculator
ex $111.3194 \mathrm{~mm}=\frac{1.75 \cdot 4.58 \mathrm{~m}}{72 \mathrm{rad}}$
11) Radius of Shaft using Shear Stress induced at Surface of Shaft
$f \times \mathrm{R}=\frac{\tau \cdot \mathrm{L}_{\text {shaft }}}{\mathrm{G}_{\text {Torsion }} \cdot \theta_{\text {Torsion }}}$
Open Calculator
ex $110.2139 \mathrm{~mm}=\frac{180 \mathrm{MPa} \cdot 4.58 \mathrm{~m}}{40 \mathrm{GPa} \cdot 0.187 \mathrm{rad}}$
12) Shear Strain at Outer Surface of Circular Shaft
$\mathrm{fx} \eta=\frac{\mathrm{R} \cdot \theta_{\text {Circularshafts }}}{\mathrm{L}_{\text {shaft }}}$
ex $1.729258=\frac{110 \mathrm{~mm} \cdot 72 \mathrm{rad}}{4.58 \mathrm{~m}}$

Open Calculator
13) Shear Stress at Surface of Shaft using Shear Stress-induced at Radius 'r' from Center of Shaft
$\mathrm{fx}_{\mathrm{x}} \mathrm{T}_{\mathrm{r}}=\frac{\tau \cdot \mathrm{r}}{\mathrm{R}}$
Open Calculator
ex $199.6364 \mathrm{MPa}=\frac{180 \mathrm{MPa} \cdot 0.122 \mathrm{~m}}{110 \mathrm{~mm}}$
目
14) Shear Stress induced at Radius 'r' from Center of Shaft
$\mathrm{fx}_{\mathrm{x}} \tau=\frac{\mathrm{T}_{\mathrm{r}} \cdot \mathrm{r}}{\mathrm{R}}$
Open Calculator
ex $221.8182 \mathrm{MPa}=\frac{200 \mathrm{MPa} \cdot 0.122 \mathrm{~m}}{110 \mathrm{~mm}}$
15) Shear Stress induced at Radius 'r' from Center of Shaft using Modulus of Rigidity

$$
\begin{aligned}
& \mathbf{f x} \mathrm{T}_{\mathrm{r}}=\frac{\mathrm{r} \cdot \mathrm{G}_{\text {Torsion }} \cdot \theta_{\text {Circularshafts }}}{\tau} \\
& \mathbf{e x} 0.001952 \mathrm{MPa}=\frac{0.122 \mathrm{~m} \cdot 40 \mathrm{GPa} \cdot 72 \mathrm{rad}}{180 \mathrm{MPa}}
\end{aligned}
$$

16) Shear Stress induced at Surface of Shaft
$\mathbf{f x} \tau=\frac{\mathrm{R} \cdot \mathrm{G}_{\text {Torsion }} \cdot \theta_{\text {Torsion }}}{\mathrm{L}_{\text {shaft }}}$
ex
$179.6507 \mathrm{MPa}=\frac{110 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot 0.187 \mathrm{rad}}{4.58 \mathrm{~m}}$

## 17) Value of Radius $r$ using Shear Stress induced at Radius $r$ from Center of Shaft

$f_{x} r=\frac{T_{r} \cdot R}{r}$
$200 \mathrm{MPa} \cdot 110 \mathrm{~mm}$ 180MPa

## Variables Used

- $\mathbf{G}_{\text {Torsion }}$ Modulus of Rigidity (Gigapascal)
- $L_{\text {shaft }}$ Length of Shaft (Meter)
- r Radius from Center to Distance r (Meter)
- R Radius of Shaft (Millimeter)
- $\mathbf{T}_{\mathbf{r}}$ Shear Stress at Radius r (Megapascal)
- $\theta_{\text {Circularshafts }}$ Angle of Twist for Circular Shafts (Radian)
- $\theta_{\text {Torsion }}$ Angle of Twist SOM (Radian)
- t Shear Stress in Shaft (Megapascal)
- $\eta$ Shear Strain


## Constants, Functions, Measurements used

- Measurement: Length in Meter (m), Millimeter (mm) Length Unit Conversion
- Measurement: Pressure in Gigapascal (GPa) Pressure Unit Conversion
- Measurement: Angle in Radian (rad)

Angle Unit Conversion

- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion


## Check other formula lists

- Torsion Equation of Circular Shafts Formulas
- Torsional Rigidity and Polar Modulus Formulas

Feel free to SHARE this document with your friends!

## PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

