

Torsion Equation of Circular Shafts Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Torsion Equation of Circular Shafts Formulas

Torsion Equation of Circular Shafts 🕑

2) Angle of Twist with known Shear Stress in Shaft 🕑

$$f_{\mathbf{X}} \theta_{\text{Torsion}} = \frac{\tau \cdot \text{L}_{\text{shaft}}}{\text{R} \cdot \text{G}_{\text{Torsion}}}$$
$$e_{\mathbf{X}} 0.187364 \text{rad} = \frac{180 \text{MPa} \cdot 4.58 \text{m}}{110 \text{mm} \cdot 40 \text{GPa}}$$

3) Angle of Twist with known Shear Stress induced at Radius r from Center of Shaft

$$f_{\mathbf{x}} \theta_{\text{Torsion}} = \frac{L_{\text{shaft}} \cdot \tau}{\mathbf{R} \cdot \mathbf{G}_{\text{Torsion}}}$$
$$e_{\mathbf{x}} 0.187364 \text{rad} = \frac{4.58 \text{m} \cdot 180 \text{MPa}}{110 \text{mm} \cdot 40 \text{GPa}}$$

Open Calculator

Open Calculator

Open Calculator

4) Length of Shaft with known Shear Strain at Outer Surface of Shaft 🕑

fx
$$L_{shaft} = rac{R \cdot heta_{Circularshafts}}{\eta}$$

ex $4.525714m = rac{110mm \cdot 72rad}{1.75}$

5) Length of Shaft with known Shear Stress induced at Radius r from Center of Shaft

Open Calculator

7) Modulus of Rigidity of material of Shaft using Shear Stress-induced at Surface of Shaft

fx
$$G_{Torsion} = rac{\tau \cdot L_{shaft}}{R \cdot \theta_{Torsion}}$$

$$a \times 40.07778 \text{GPa} = \frac{180 \text{MPa} \cdot 4.58 \text{m}}{110 \text{mm} \cdot 0.187 \text{rad}}$$

8) Modulus of Rigidity of Shaft if Shear Stress-induced at Radius 'r' from Center of Shaft

fx
$$G_{Torsion} = \frac{L_{shaft} \cdot \tau}{R \cdot \theta_{Torsion}}$$

ex 40.07778 GPa $= \frac{4.58m \cdot 180$ MPa}{110mm \cdot 0.187rad

Open Calculator

9) Radius of Shaft if Shear Stress induced at Radius r from Center of Shaft

$$\mathbf{fx} \mathbf{R} = \frac{\mathbf{r} \cdot \mathbf{\tau}}{\mathbf{T_r}}$$

$$\mathbf{ex} 109.8 \text{mm} = \frac{0.122 \text{m} \cdot 180 \text{MPa}}{200 \text{MPa}}$$

Open Calculator 🕑

10) Radius of Shaft using Shear Strain at Outer Surface of Shaft 🕑

14) Shear Stress induced at Radius 'r' from Center of Shaft 🕑

$$\begin{array}{c} \hline \textbf{ex} \hline 0.001952 \text{MPa} = \frac{0.122 \text{m} \cdot 40 \text{GPa} \cdot 72 \text{rad}}{180 \text{MPa}} \end{array}$$

τ

16) Shear Stress induced at Surface of Shaft 🕑

fx	τ =	$ m R \cdot G_{ m Torsio}$	$_{\rm n} \cdot \theta_{ m Torsion}$	
		$L_{\rm sh}$	aft	
ex	$179.6507 \mathrm{MPa} =$		$110 \mathrm{mm} \cdot 40 \mathrm{GPa} \cdot 0.187 \mathrm{rad}$	
			4.58m	

Open Calculator

17) Value of Radius r using Shear Stress induced at Radius r from Center of Shaft

Open Calculator 🕑

Variables Used

- GTorsion Modulus of Rigidity (Gigapascal)
- Lshaft Length of Shaft (Meter)
- **r** Radius from Center to Distance r (Meter)
- R Radius of Shaft (Millimeter)
- T_r Shear Stress at Radius r (Megapascal)
- θ_{Circularshafts} Angle of Twist for Circular Shafts (Radian)
- **θ**Torsion Angle of Twist SOM (Radian)
- T Shear Stress in Shaft (Megapascal)
- η Shear Strain

8/10

Constants, Functions, Measurements used

- Measurement: Length in Meter (m), Millimeter (mm) Length Unit Conversion
- Measurement: Pressure in Gigapascal (GPa) Pressure Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Shafts Formulas
- Torsion Equation of Circular
 Torsional Rigidity and Polar Modulus Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/1/2024 | 3:56:10 AM UTC

Please leave your feedback here...

