

Design of Beam and Slab Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Design of Beam and Slab Formulas

Design of Beam and Slab 🕑

Curtailment of Flexural Tension Reinforcement

Development Length Requirements 🕑

1) Applied Shear at Section for Development Length of Simple Support

fx
$$V_u = \frac{M_n}{Ld - La}$$

ex $33.4N/mm^2 = \frac{10.02MPa}{400mm - 100mm}$

2) Bar Steel Yield Strength given Basic Development Length 🗹

fx
$$f_y = \frac{Ld \cdot \sqrt{f_c}}{0.04 \cdot A_b}$$

ex 249.8699MPa = $\frac{400 \text{mm} \cdot \sqrt{15 \text{MPa}}}{0.04 \cdot 155 \text{mm}^2}$

Open Calculator

Open Calculator

3) Basic Development Length for 14mm Diameter Bars 🖒 $\mathrm{Ld} = rac{0.085 \cdot \mathrm{f_y}}{\sqrt{\mathrm{f_c}}}$ Open Calculator $\sqrt{15 MPa}$ 4) Basic Development Length for 18mm Diameter Bars 🖒 fx $\mathrm{Ld} = rac{0.125 \cdot \mathrm{f_y}}{\sqrt{\mathrm{f_c}}}$ Open Calculator ex $\sqrt{15MPa}$ 5) Basic Development Length for Bars and Wire in Tension 💪 $\mathrm{Ld} = rac{0.04 \cdot \mathrm{A_b} \cdot \mathrm{f_y}}{\sqrt{\mathrm{f_c}}}$ Open Calculator $400.2083 \text{mm} = \frac{0.04 \cdot 155 \text{mm}^2 \cdot 250 \text{MPa}}{-}$ ex $\sqrt{15MPa}$ 6) Computed Flexural Strength given Development Length for Simple Support 🗹 Open Calculator fx $M_n = (V_u) \cdot (Ld - La)$ ex 10.02MPa = (33.4N/mm²) · (400mm - 100mm)

Open Calculator

fx
$$\mathrm{Ld} = \left(rac{\mathrm{M_n}}{\mathrm{V_u}}
ight) + (\mathrm{La})$$

ex
$$100.3 \mathrm{mm} = \left(rac{10.02 \mathrm{MPa}}{33.4 \mathrm{N/mm^2}}
ight) + (100 \mathrm{mm})$$

Design of Continuous One-Way Slabs 🕑

Use of Moment Coefficients 🕑

8) Negative Moment at Exterior Face of First Interior Support for More than Two Spans

$$\label{eq:Mt} \begin{split} & \textbf{fx} \boxed{M_t = \frac{W_{load} \cdot I_n^2}{10}} \\ & \textbf{ex} \end{aligned} \\ & \textbf{36.07204N^*m} = \frac{3.6 kN \cdot (10.01m)^2}{10} \end{split}$$

Open Calculator 🕑

Open Calculator

9) Negative Moment at Exterior Face of First Interior Support for Two Spans

fx
$$M_t = rac{W_{load} \cdot I_n^2}{9}$$
 ex $40.08004 \mathrm{N^*m} = rac{3.6 \mathrm{kN} \cdot (10.01 \mathrm{m})^2}{9}$

10) Negative Moment at Interior Faces of Exterior Support where Support is Column

$$\label{eq:Mt} \begin{split} & \textbf{M}_t = \frac{W_{load} \cdot I_n^2}{12} \\ & \textbf{Open Calculator C} \\ & \textbf{Structure} \\ & \textbf{Structu$$

11) Negative Moment at Interior Faces of Exterior Supports where Support is Spandrel Beam

13) Positive Moment for End Spans if Discontinuous End is Integral with Support

16) Shear Force at All Other Supports 🕑

$$f_{\mathbf{X}} \mathbf{M}_{t} = \frac{W_{load} \cdot I_{n}^{2}}{2}$$

$$e_{\mathbf{X}} \mathbf{M}_{t} = \frac{3.6 \text{kN} \cdot (10.01 \text{m})^{2}}{2}$$

$$f_{\mathbf{X}} \mathbf{M}_{t} = \frac{3.6 \text{kN} \cdot (10.01 \text{m})^{2}}{2}$$

$$f_{\mathbf{X}} \mathbf{M}_{t} = \frac{3.6 \text{kN} \cdot (10.01 \text{m})^{2}}{2}$$

fx
$$M_{t} = 1.15 \cdot rac{W_{load} \cdot I_{n}^{2}}{2}$$

x
$$207.4142$$
N*m = $1.15 \cdot \frac{3.6$ kN $\cdot (10.01m)^2}{2}$

Doubly Reinforced Rectangular Sections C

18) Bending Moment given Total Cross-Sectional Area of Tensile Reinforcing

$$\mathbf{f_X} \ \mathrm{Mb_R} = \mathrm{A_{cs}} \cdot 7 \cdot \mathrm{f_s} \cdot \frac{\mathrm{D_B}}{8}$$

ex
$$52.21125$$
N*m = $13m^2 \cdot 7 \cdot 1.7$ Pa $\cdot \frac{2.7m}{8}$

Open Calculator 🕑

Open Calculator

e

19) Cross-Sectional Area of Compressive Reinforcing 🕑

23) Distance from Extreme Compression to Centroid given Steel Ratio 🕑

27) Stress in Steel with Tension Reinforcement only

Open Calculator 🕑

Variables Used

- A Area of Tension Reinforcement (Square Meter)
- Ab Area of Bar (Square Millimeter)
- Acs Cross-Sectional Area (Square Meter)
- As' Area of Compression Reinforcement (Square Millimeter)
- **b** Beam Width (Millimeter)
- **B**_M Bending Moment of Considered Section (*Kilonewton Meter*)
- d' Distance from Compression to Centroid Reinforcment (Millimeter)
- **D**_B Depth of Beam (Meter)
- **d_{eff}** Effective Depth of Beam (Meter)
- Ec Modulus of Elasticity of Concrete (Megapascal)
- **E**_s Modulus of Elasticity of Steel (*Kilopound Per Square Inch*)
- **f**_c 28 Day Compressive Strength of Concrete (*Megapascal*)
- **f**_{comp stress} Compressive Stress at Extreme Concrete Surface (*Kilogram-Force per Square Meter*)
- **f_{EC}** Extreme Compressive Stress of Concrete (Megapascal)
- **f**_S Reinforcement Stress (Pascal)
- **f_{TS}** Tensile Stress in Steel (Kilogram-Force per Square Meter)
- fv Yield Strength of Steel (Megapascal)
- In Length of Span (Meter)
- j Constant j
- **k** Ratio of Depth
- La Additional Embedment Length (Millimeter)

- Ld Development Length (Millimeter)
- **m** Modular Ratio
- M' Bending Moment of Singly reinforced Beam (Kilonewton Meter)
- M_n Computed Flexural Strength (Megapascal)
- M_t Moment in Structures (Newton Meter)
- Mb_R Bending Moment (Newton Meter)
- **V**_u Applied Shear at Section (*Newton per Square Millimeter*)
- Wload Vertical Load (Kilonewton)
- Psteel ratio Steel Ratio

Constants, Functions, Measurements used

- Function: **sqrt**, sqrt(Number) Square root function
- Measurement: Length in Millimeter (mm), Meter (m) Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²), Square Meter (m²) Area Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter (N/mm²), Megapascal (MPa), Pascal (Pa), Kilopound Per Square Inch (ksi), Kilogram-Force per Square Meter (kgf/m²) Pressure Unit Conversion
- Measurement: Energy in Newton Meter (N*m)
 Energy Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion
- Measurement: Moment of Force in Newton Meter (N*m), Kilonewton Meter (kN*m)

Moment of Force Unit Conversion

• Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Analysis Using Limit State Method Formulas
- Design of Beam and Slab
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/13/2023 | 4:30:58 PM UTC

Please leave your feedback here ...

