
calculatoratoz.com

0

unitsconverters.com

Design of Beam and Slab Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Design of Beam and Slab Formulas

Design of Beam and Slab ©

Curtailment of Flexural Tension Reinforcement \mathbb{C}

Development Length Requirements

1) Applied Shear at Section for Development Length of Simple Support
fx $\mathrm{V}_{\mathrm{u}}=\frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{Ld}-\mathrm{La}}$
Open Calculator
ex $33.4 \mathrm{~N} / \mathrm{mm}^{2}=\frac{10.02 \mathrm{MPa}}{400 \mathrm{~mm}-100 \mathrm{~mm}}$
2) Bar Steel Yield Strength given Basic Development Length
$f x f_{y}=\frac{L d \cdot \sqrt{f_{c}}}{0.04 \cdot A_{b}}$
Open Calculator
ex $249.8699 \mathrm{MPa}=\frac{400 \mathrm{~mm} \cdot \sqrt{15 \mathrm{MPa}}}{0.04 \cdot 155 \mathrm{~mm}^{2}}$
3) Basic Development Length for 14 mm Diameter Bars
f. $\mathrm{Ld}=\frac{0.085 \cdot \mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}}}$
ex $5.486726 \mathrm{~mm}=\frac{0.085 \cdot 250 \mathrm{MPa}}{\sqrt{15 \mathrm{MPa}}}$
4) Basic Development Length for 18mm Diameter Bars
$f_{x} L d=\frac{0.125 \cdot f_{y}}{\sqrt{f_{c}}}$
Open Calculator
ex $8.068715 \mathrm{~mm}=\frac{0.125 \cdot 250 \mathrm{MPa}}{\sqrt{15 \mathrm{MPa}}}$
5) Basic Development Length for Bars and Wire in Tension
$\mathrm{fx} \mathrm{Ld}=\frac{0.04 \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}}}$
Open Calculator
ex $400.2083 \mathrm{~mm}=\frac{0.04 \cdot 155 \mathrm{~mm}^{2} \cdot 250 \mathrm{MPa}}{\sqrt{15 \mathrm{MPa}}}$
6) Computed Flexural Strength given Development Length for Simple Support
$\mathrm{fx}_{\mathrm{x}} \mathrm{M}_{\mathrm{n}}=\left(\mathrm{V}_{\mathrm{u}}\right) \cdot(\mathrm{Ld}-\mathrm{La})$
Open Calculator
ex $10.02 \mathrm{MPa}=\left(33.4 \mathrm{~N} / \mathrm{mm}^{2}\right) \cdot(400 \mathrm{~mm}-100 \mathrm{~mm})$
7) Development Length for simple Support
$f \mathrm{x} L \mathrm{~L}=\left(\frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{V}_{\mathrm{u}}}\right)+(\mathrm{La})$

Open Calculator

ex $100.3 \mathrm{~mm}=\left(\frac{10.02 \mathrm{MPa}}{33.4 \mathrm{~N} / \mathrm{mm}^{2}}\right)+(100 \mathrm{~mm})$

Design of Continuous One-Way Slabs

Use of Moment Coefficients ©

8) Negative Moment at Exterior Face of First Interior Support for More than Two Spans
$f \mathrm{x} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{W}_{\text {load }} \cdot I_{\mathrm{n}}^{2}}{10}$
Open Calculator
$\mathrm{ex} 36.07204 \mathrm{~N}^{*} \mathrm{~m}=\frac{3.6 \mathrm{kN} \cdot(10.01 \mathrm{~m})^{2}}{10}$
9) Negative Moment at Exterior Face of First Interior Support for Two Spans
$\mathrm{fx} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{W}_{\mathrm{load}} \cdot \mathrm{I}_{\mathrm{n}}^{2}}{9}$
ex $40.08004 \mathrm{~N}^{*} \mathrm{~m}=\frac{3.6 \mathrm{kN} \cdot(10.01 \mathrm{~m})^{2}}{9}$
10) Negative Moment at Interior Faces of Exterior Support where Support is Column

$$
f \mathrm{x} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{W}_{\text {load }} \cdot I_{\mathrm{n}}^{2}}{12}
$$

ex $30.06003 \mathrm{~N}^{*} \mathrm{~m}=\frac{3.6 \mathrm{kN} \cdot(10.01 \mathrm{~m})^{2}}{12}$
11) Negative Moment at Interior Faces of Exterior Supports where Support is Spandrel Beam
$f \mathrm{fx} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{W}_{\text {load }} \cdot I_{\mathrm{n}}^{2}}{24}$
Open Calculator
ex $15.03001 \mathrm{~N}^{*} \mathrm{~m}=\frac{3.6 \mathrm{kN} \cdot(10.01 \mathrm{~m})^{2}}{24}$
12) Negative Moment at Other Faces of Interior Supports
$f \mathbf{x} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{W}_{\text {load }} \cdot I_{\mathrm{n}}^{2}}{11}$
13) Positive Moment for End Spans if Discontinuous End is Integral with Support $\sqrt{ }$

$$
\mathrm{fx} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{W}_{\text {load }} \cdot \mathrm{I}_{\mathrm{n}}^{2}}{14}
$$

ex $25.76574 \mathrm{~N}^{*} \mathrm{~m}=\frac{3.6 \mathrm{kN} \cdot(10.01 \mathrm{~m})^{2}}{14}$
14) Positive Moment for End Spans if Discontinuous End is Unrestrained E
$f \mathrm{x} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{W}_{\text {load }} \cdot I_{\mathrm{n}}^{2}}{11}$
ex $32.79276 \mathrm{~N}^{*} \mathrm{~m}=\frac{3.6 \mathrm{kN} \cdot(10.01 \mathrm{~m})^{2}}{11}$
15) Positive Moment for Interior Spans
$\mathrm{fx} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{W}_{\text {load }} \cdot \mathrm{I}_{\mathrm{n}}^{2}}{16}$
$22.54502 \mathrm{~N}^{*} \mathrm{~m}=\frac{3.6 \mathrm{kN} \cdot(10.01 \mathrm{~m})^{2}}{16}$
16) Shear Force at All Other Supports
$f \times \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{W}_{\text {load }} \cdot \mathrm{I}_{\mathrm{n}}^{2}}{2}$

Open Calculator

ex $180.3602 \mathrm{~N}^{*} \mathrm{~m}=\frac{3.6 \mathrm{kN} \cdot(10.01 \mathrm{~m})^{2}}{2}$
17) Shear Force in End Members at First Interior Support
$\mathrm{fx} \mathrm{M}_{\mathrm{t}}=1.15 \cdot \frac{\mathrm{~W}_{\text {load }} \cdot \mathrm{I}_{\mathrm{n}}^{2}}{2}$
Open Calculator
ex $207.4142 \mathrm{~N}^{*} \mathrm{~m}=1.15 \cdot \frac{3.6 \mathrm{kN} \cdot(10.01 \mathrm{~m})^{2}}{2}$

Doubly Reinforced Rectangular Sections

18) Bending Moment given Total Cross-Sectional Area of Tensile Reinforcing
$f \mathrm{fx} \mathrm{Mb}_{\mathrm{R}}=\mathrm{A}_{\mathrm{cs}} \cdot 7 \cdot \mathrm{f}_{\mathrm{s}} \cdot \frac{\mathrm{D}_{\mathrm{B}}}{8}$
ex $52.21125 \mathrm{~N}^{*} \mathrm{~m}=13 \mathrm{~m}^{2} \cdot 7 \cdot 1.7 \mathrm{~Pa} \cdot \frac{2.7 \mathrm{~m}}{8}$
19) Cross-Sectional Area of Compressive Reinforcing
$f \mathbf{x} \mathrm{~A}_{\mathrm{s}^{\prime}}=\frac{\mathrm{B}_{\mathrm{M}}-\mathrm{M}^{\prime}}{\mathrm{m} \cdot \mathrm{f}_{\mathrm{EC}} \cdot \mathrm{d}_{\mathrm{eff}}}$
Open Calculator
ex $20.61263 \mathrm{~mm}^{2}=\frac{49.5 \mathrm{kN}^{*} \mathrm{~m}-16.5 \mathrm{kN}^{*} \mathrm{~m}}{8 \cdot 50.03 \mathrm{MPa} \cdot 4 \mathrm{~m}}$
20) Total Cross-Sectional Area of Tensile Reinforcing
$f \mathrm{fx} \mathrm{A}_{\mathrm{cs}}=8 \cdot \frac{\mathrm{Mb}_{\mathrm{R}}}{7 \cdot \mathrm{f}_{\mathrm{s}} \cdot \mathrm{D}_{\mathrm{B}}}$
Open Calculator
ex $13.19639 \mathrm{~m}^{2}=8 \cdot \frac{53 \mathrm{~N}^{*} \mathrm{~m}}{7 \cdot 1.7 \mathrm{~Pa} \cdot 2.7 \mathrm{~m}}$

Singly Reinforced Rectangular Sections ©

21) Area of Tension Reinforcement given Steel Ratio
$f \times A=\left(\rho_{\text {steel ratio }} \cdot b \cdot d^{\prime}\right)$
ex $7.57998 \mathrm{~m}^{2}=(37.9 \cdot 26.5 \mathrm{~mm} \cdot 7547.15 \mathrm{~mm})$
22) Beam Width given Steel Ratio

ex $34.96051 \mathrm{~mm}=\frac{10 \mathrm{~m}^{2}}{7547.15 \mathrm{~mm} \cdot 37.9}$
23) Distance from Extreme Compression to Centroid given Steel Ratio

ex $9956.688 \mathrm{~mm}=\frac{10 \mathrm{~m}^{2}}{26.5 \mathrm{~mm} \cdot 37.9}$
24) Lever Arm Depth Factor
$f \mathrm{x} j=1-\left(\frac{k}{3}\right)$
Open Calculator
ex $0.796667=1-\left(\frac{0.61}{3}\right)$
25) Modular Ratio
$\mathrm{fx} \mathrm{m}=\frac{\mathrm{E}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{c}}}$
Open Calculator
ex $43915.65=\frac{1000 \mathrm{ksi}}{0.157 \mathrm{MPa}}$
26) Steel Ratio
$f \mathbf{f} \rho_{\text {steel ratio }}=\frac{\mathrm{A}}{\mathrm{b} \cdot \mathrm{d}^{\prime}}$
Open Calculator
ex $50.00013=\frac{10 \mathrm{~m}^{2}}{26.5 \mathrm{~mm} \cdot 7547.15 \mathrm{~mm}}$
27) Stress in Steel with Tension Reinforcement only

$$
\begin{aligned}
& f \times \mathrm{f}_{\mathrm{TS}}=\frac{\mathrm{m} \cdot \mathrm{f}_{\text {comp stress }} \cdot(1-\mathrm{k})}{\mathrm{k}} \\
& \mathrm{ex} 255.7377 \mathrm{kgf} / \mathrm{m}^{2}=\frac{8 \cdot 50 \mathrm{kgf} / \mathrm{m}^{2} \cdot(1-0.61)}{0.61}
\end{aligned}
$$

Variables Used

- A Area of Tension Reinforcement (Square Meter)
- $\mathbf{A}_{\mathbf{b}}$ Area of Bar (Square Millimeter)
- $\mathbf{A}_{\mathbf{c s}}$ Cross-Sectional Area (Square Meter)
- $\mathbf{A}_{\mathbf{s}}$ ' Area of Compression Reinforcement (Square Millimeter)
- b Beam Width (Millimeter)
- $\mathbf{B}_{\mathbf{M}}$ Bending Moment of Considered Section (Kilonewton Meter)
- d' Distance from Compression to Centroid Reinforcment (Millimeter)
- $\mathbf{D}_{\mathbf{B}}$ Depth of Beam (Meter)
- $\mathbf{d}_{\text {eff }}$ Effective Depth of Beam (Meter)
- $\mathbf{E}_{\mathbf{c}}$ Modulus of Elasticity of Concrete (Megapascal)
- $\mathbf{E}_{\mathbf{s}}$ Modulus of Elasticity of Steel (Kilopound Per Square Inch)
- $\mathbf{f}_{\mathbf{c}} 28$ Day Compressive Strength of Concrete (Megapascal)
- $\mathbf{f}_{\text {comp stress }}$ Compressive Stress at Extreme Concrete Surface (Kilogram-Force per Square Meter)
- $\mathbf{f}_{\text {EC }}$ Extreme Compressive Stress of Concrete (Megapascal)
- $\mathbf{f}_{\mathbf{s}}$ Reinforcement Stress (Pascal)
- $\mathbf{f}_{\text {TS }}$ Tensile Stress in Steel (Kilogram-Force per Square Meter)
- $\mathbf{f}_{\mathbf{y}}$ Yield Strength of Steel (Megapascal)
- In Length of Span (Meter)
- j Constant j
- k Ratio of Depth
- La Additional Embedment Length (Millimeter)
- Ld Development Length (Millimeter)
- m Modular Ratio
- M' Bending Moment of Singly reinforced Beam (Kilonewton Meter)
- $\mathbf{M}_{\mathbf{n}}$ Computed Flexural Strength (Megapascal)
- $\mathbf{M}_{\mathbf{t}}$ Moment in Structures (Newton Meter)
- $\mathbf{M b}_{\mathbf{R}}$ Bending Moment (Newton Meter)
- $\mathbf{V}_{\mathbf{u}}$ Applied Shear at Section (Newton per Square Millimeter)
- W $\mathbf{W l o a d}$ Vertical Load (Kilonewton)
- $\rho_{\text {steel ratio }}$ Steel Ratio

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm), Meter (m)

Length Unit Conversion

- Measurement: Area in Square Millimeter (mm^{2}), Square Meter $\left(\mathrm{m}^{2}\right)$ Area Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$), Megapascal (MPa), Pascal (Pa), Kilopound Per Square Inch (ksi), Kilogram-Force per Square Meter (kgf/m²)
Pressure Unit Conversion
- Measurement: Energy in Newton Meter (N*m)

Energy Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Moment of Force in Newton Meter (N*m), Kilonewton Meter (kN*m)
Moment of Force Unit Conversion
- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Analysis Using Limit State Method Formulas
- Design of Beam and Slab Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

