

Design of Two Way Slab System and Footing Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 12 Design of Two Way Slab System and Footing Formulas

Design of Two Way Slab System 🕑

1) Concrete Shear Strength at Critical Sections 🖸

fx
$$\mathrm{V} = \left(2 \cdot (\mathrm{f_c})^{rac{1}{2}}
ight) \cdot \mathrm{d'} \cdot \mathrm{b_o}$$

2) Equation for Punching Shear Design 🕑

fx
$$\left | \phi \mathrm{V_n} = \phi \cdot (\mathrm{V_c} + \mathrm{V_s})
ight |$$

$$| 161.5 \text{MPa} = 0.85 \cdot (90 \text{MPa} + 100 \text{MPa}) |$$

3) Maximum Slab thickness 🖸

fx
$$\mathbf{h} = \left(\frac{\mathbf{l}_{n}}{36}\right) \cdot \left(0.8 + \frac{\mathbf{fy}_{\text{steel}}}{200000}\right)$$

ex $3509.189 \text{mm} = \left(\frac{101 \text{mm}}{36}\right) \cdot \left(0.8 + \frac{250 \text{MPa}}{200000}\right)$

Open Calculator

Open Calculator

Open Calculator

Footing 🕑

4) Maximum Moment for Symmetrical Concrete Wall Footing 🚰

$$fx M'max = \left(\frac{P}{8}\right) \cdot (b - t)^{2}$$

$$fx M'max = \left(\frac{11.76855Pa}{8}\right) \cdot (0.2m - 7.83m)^{2}$$

$$fx B = \left(6 \cdot \frac{M}{D^{2}}\right)$$

$$fx B = \left(6 \cdot \frac{M}{D^{2}}\right)$$

$$fx B = \left(6 \cdot \frac{M}{D^{2}}\right)$$

$$fx D = \left(6 \cdot \frac{500.5N}{(15.2m)^{2}}\right)$$

$$fx P = \frac{8 \cdot M'max}{(b - t)^{2}}$$

$$fx Open Calculator C Ope$$

Partial Safety Factors for Loads 🕑

7) Basic Load Effect given Ultimate Strength for Applied Wind Loads

fx
$$\mathrm{DL} = rac{\mathrm{U} - (1.3 \cdot \mathrm{W})}{0.9}$$

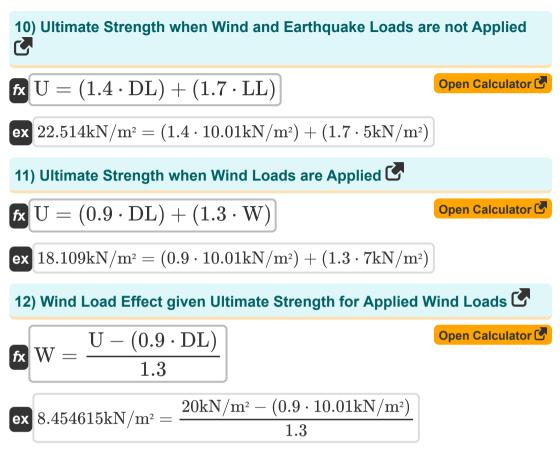
$$12.11111 \text{kN/m}^2 = \frac{20 \text{kN/m}^2 - (1.3 \cdot 7 \text{kN/m}^2)}{0.9}$$

8) Basic Load Effect given Ultimate Strength for Unapplied Wind and Earthquake Loads

fx
$$DL = rac{U - (1.7 \cdot LL)}{1.4}$$

ex
$$8.214286 \text{kN/m}^2 = \frac{20 \text{kN/m}^2 - (1.7 \cdot 5 \text{kN/m}^2)}{1.4}$$

9) Live Load Effect given Ultimate Strength for Unapplied Wind and Earthquake Loads


fx
$$\mathrm{LL}=rac{\mathrm{U}-(1.4\cdot\mathrm{DL})}{1.7}$$
 ex $3.521176\mathrm{kN/m^2}=rac{20\mathrm{kN/m^2}-(1.4\cdot10.01\mathrm{kN/m^2})}{1.7}$

Open Calculator

Open Calculator

Open Calculator 🕑

()

5/8

Variables Used

- **b** Width of Footing (*Meter*)
- B Tensile Bending Stress (Newton Millimeter)
- **b**_o Perimeter of Critical Section (Meter)
- d' Distance from Compression to Centroid Reinforcment (Millimeter)
- D Depth of Footing (Meter)
- DL Dead Load (Kilonewton per Square Meter)
- **f**_c 28 Day Compressive Strength of Concrete (Megapascal)
- fysteel Yield Strength of Steel (Megapascal)
- h Maximum Slab Thickness (Millimeter)
- In Length of Clear Span in Long Direction (Millimeter)
- LL Live Load (Kilonewton per Square Meter)
- M Factored Moment (Newton)
- M'max Maximum Moment (Newton Meter)
- P Uniform Pressure on Soil (Pascal)
- t Wall Thickness (Meter)
- U Ultimate Strength (Kilonewton per Square Meter)
- V Shear Strength of Concrete at Critical Section (Pascal)
- V_c Nominal Shear Strength of Concrete (Megapascal)
- V_s Nominal Shear Strength by Reinforcement (*Megapascal*)
- W Wind Load (Kilonewton per Square Meter)
- φ Capacity Reduction Factor
- **φV**_n Punching Shear (Megapascal)

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm), Meter (m) Length Unit Conversion
- Measurement: Pressure in Pascal (Pa), Megapascal (MPa), Kilonewton per Square Meter (kN/m²)
 Pressure Unit Conversion C
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Moment of Force in Newton Meter (N*m)
 Moment of Force Unit Conversion
- Measurement: Bending Moment in Newton Millimeter (N*mm) Bending Moment Unit Conversion
- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Properties of Basic Material of Concrete Structures Formulas
- Design for Beams and Ultimate Strength for Rectangular Beams with Tension Reinforcement Formulas
- Design of Compression Members
 Formulas
- Design of Retaining Walls
 Formulas
- Design of Two Way Slab System and Footing Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/8/2024 | 9:38:38 AM UTC

Please leave your feedback here...

