Doubly Reinforced Rectangular Sections Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 18 Doubly Reinforced Rectangular Sections Formulas

Doubly Reinforced Rectangular Sections

1) Force Acting on Compressive Steel
$\mathrm{f}_{\mathrm{x}} \mathrm{C}_{\mathrm{s}^{\prime}}=\mathrm{F}_{\mathrm{T}}-\mathrm{C}_{\mathrm{c}}$
ex $10 \mathrm{~N}=760 \mathrm{~N}-750 \mathrm{~N}$
2) Force Acting on Tensile Steel $\sqrt{ }$
fx $\mathrm{F}_{\mathrm{T}}=\mathrm{C}_{\mathrm{c}}+\mathrm{C}_{\mathrm{s}^{\prime}}$
ex $760.2 \mathrm{~N}=750 \mathrm{~N}+10.2 \mathrm{~N}$
3) Moment Resistance in Compression
$\mathrm{fx}_{\mathrm{X}} \mathrm{M}_{\mathrm{R}}=0.5 \cdot\left(\mathrm{f}_{\mathrm{ec}} \cdot \mathrm{j} \cdot \mathrm{W}_{\mathrm{b}} \cdot\left(\mathrm{d}^{2}\right)\right) \cdot\left(\mathrm{K}+2 \cdot \mathrm{~m}_{\text {Elastic }} \cdot \rho^{\prime} \cdot\left(1-\left(\frac{\mathrm{D}}{\mathrm{K} \cdot \mathrm{d}}\right)\right)\right)$
ex
$1.666138 \mathrm{~N}^{*} \mathrm{~m}=0.5 \cdot\left(10.01 \mathrm{MPa} \cdot 0.8 \cdot 18 \mathrm{~mm} \cdot\left((5 \mathrm{~mm})^{2}\right)\right) \cdot\left(0.65+2 \cdot 0.6 \cdot 0.60 \cdot\left(1-\left(\frac{2.01 \mathrm{~mm}}{0.65 \cdot 5 \mathrm{~mm}}\right)\right)\right)$
4) Moment Resistance of Tensile Steel given Area
$f \mathrm{f} \mathrm{M}_{\mathrm{TS}}=\left(\mathrm{A}_{\mathrm{s}}\right) \cdot\left(\mathrm{f}_{\mathrm{TS}}\right) \cdot\left(\mathrm{j}_{\mathrm{d}}\right)$
ex $1.2 \mathrm{E}^{\wedge} 6 \mathrm{kN}{ }^{*} \mathrm{~m}=\left(100.0 \mathrm{~mm}^{2}\right) \cdot\left(24 \mathrm{kgf} / \mathrm{m}^{2}\right) \cdot(50 \mathrm{~mm})$
5) Moment Resisting Capacity of Compressive Steel given Stress
$\mathrm{f} \times \mathrm{M}_{\mathrm{s}}^{\prime}=2 \cdot \mathrm{f}_{\mathrm{s}}^{\prime} \cdot \mathrm{A}_{\mathrm{s}^{\prime}} \cdot(\mathrm{d}-\mathrm{D})$
ex $0.01608 \mathrm{kN}^{*} \mathrm{~m}=2 \cdot 134.449 \mathrm{MPa} \cdot 20 \mathrm{~mm}^{2} \cdot(5 \mathrm{~mm}-2.01 \mathrm{~mm})$
6) Stress in Extreme Compression Surface given Moment Resistance
$f \times \mathrm{f}_{\mathrm{ec}}=2 \cdot \frac{\mathrm{M}_{\mathrm{R}}}{\left(\mathrm{j} \cdot \mathrm{W}_{\mathrm{b}} \cdot\left(\mathrm{d}^{2}\right)\right) \cdot\left(\mathrm{K}+2 \cdot \mathrm{~m}_{\text {Elastic }} \cdot \rho^{\prime}\right) \cdot\left(1-\left(\frac{\mathrm{D}}{\mathrm{K} \cdot \mathrm{d}}\right)\right)}$
ex $17.00547 \mathrm{MPa}=2 \cdot \frac{1.6 \mathrm{~N}^{*} \mathrm{~m}}{\left(0.8 \cdot 18 \mathrm{~mm} \cdot\left((5 \mathrm{~mm})^{2}\right)\right) \cdot(0.65+2 \cdot 0.6 \cdot 0.60) \cdot\left(1-\left(\frac{2.01 \mathrm{~mm}}{0.65 \cdot 5 \mathrm{~mm}}\right)\right)}$
7) Stress in Tensile Steel to Stress in Extreme Compression Surface Ratio
$f \mathrm{fx} \mathrm{fsc}_{\text {ratio }}=\frac{\mathrm{k}}{2} \cdot\left(\rho_{\mathrm{T}}-\left(\frac{\rho^{\prime} \cdot\left(\mathrm{K}_{\mathrm{d}}-\mathrm{d}^{\prime}\right)}{\mathrm{D}_{\text {centroid }}-\mathrm{K}_{\mathrm{d}}}\right)\right)$
ex $3.944147=\frac{0.61}{2} \cdot\left(12.9-\left(\frac{0.031 \cdot(100.2 \mathrm{~mm}-50.01 \mathrm{~mm})}{51.01 \mathrm{~mm}-100.2 \mathrm{~mm}}\right)\right)$
8) Total Compression on Concrete
$f \mathrm{f} \mathrm{C}_{\mathrm{b}}=\mathrm{C}_{\mathrm{s}^{\prime}}+\mathrm{C}_{\mathrm{c}}$
ex $760.2 \mathrm{~N}=10.2 \mathrm{~N}+750 \mathrm{~N}$
9) Total Compressive force on Beam Cross Section
$f_{x} \mathrm{C}_{\mathrm{b}}=\mathrm{C}_{\mathrm{c}}+\mathrm{C}_{\mathrm{s}}$
ex $760.2 \mathrm{~N}=750 \mathrm{~N}+10.2 \mathrm{~N}$

Check for Stress in Beams ©

10) Distance from Neutral Axis to Compressive Reinforcing Steel
$\mathrm{fx}_{\mathrm{x}} \mathrm{c}_{\mathrm{sc}}=\mathrm{f}_{\mathrm{sc}} \cdot \frac{\mathrm{I}_{\mathrm{A}}}{2 \cdot \mathrm{n} \cdot \mathrm{B}_{\mathrm{M}}}$
ex $25.22282 \mathrm{~mm}=8.49 \mathrm{MPa} \cdot \frac{10 \mathrm{E} 7 \mathrm{~mm}^{4}}{2 \cdot 0.34 \cdot 49.5 \mathrm{kN}^{*} \mathrm{~m}}$
11) Distance from Neutral Axis to Face of Concrete
$f x K_{d}=f_{\text {fiber concrete }} \cdot \frac{I_{A}}{B_{M}}$
ex $100.202 \mathrm{~mm}=49.6 \mathrm{MPa} \cdot \frac{10 \mathrm{E}_{\mathrm{mm}} \mathrm{mm}^{4}}{49.5 \mathrm{kN}^{*} \mathrm{~m}}$
12) Distance from Neutral Axis to Tensile Reinforcing Steel
$f \mathrm{f} \mathrm{c}_{\mathrm{s}}=\mathrm{f}_{\text {unit stress }} \cdot \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{n} \cdot \mathrm{B}_{\mathrm{M}}}$
ex $594.7712 \mathrm{~mm}=100.1 \mathrm{MPa} \cdot \frac{10 \mathrm{E}_{\mathrm{mm}}{ }^{4}}{0.34 \cdot 49.5 \mathrm{kN}^{*} \mathrm{~m}}$
13) Moment of Inertia of Transformed Beam Section
$\mathrm{fx}_{\mathrm{x}} \mathrm{I}_{\mathrm{TB}}=\left(0.5 \cdot \mathrm{~b} \cdot\left(\mathrm{~K}_{\mathrm{d}}^{2}\right)\right)+2 \cdot\left(\mathrm{~m}_{\text {Elastic }}-1\right) \cdot \mathrm{A}_{\mathrm{s}^{\prime}} \cdot\left(\mathrm{c}_{\mathrm{sc}}^{2}\right)+\mathrm{m}_{\text {Elastic }} \cdot\left(\mathrm{c}_{\mathrm{s}}^{2}\right) \cdot \mathrm{A}$
$2.124283 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\left(0.5 \cdot 26.5 \mathrm{~mm} \cdot\left((100.2 \mathrm{~mm})^{2}\right)\right)+2 \cdot(0.6-1) \cdot 20 \mathrm{~mm}^{2} \cdot\left((25.22 \mathrm{~mm})^{2}\right)+0.6 \cdot((595 \mathrm{~mm})$
14) Total Bending Moment given Unit Stress in Extreme Fiber of Concrete
fx $\mathrm{B}_{\mathrm{M}}=\mathrm{f}_{\text {fiber concrete }} \cdot \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{K}_{\mathrm{d}}}$
ex $49.501 \mathrm{kN}{ }^{*} \mathrm{~m}=49.6 \mathrm{MPa} \cdot \frac{10 \mathrm{E} 7 \mathrm{~mm}^{4}}{100.2 \mathrm{~mm}}$
15) Total Bending Moment given Unit Stress in Tensile Reinforcing Steel
$f \mathbf{~} \mathrm{Mb}_{\mathrm{R}}=\mathrm{f}_{\text {unit stress }} \cdot \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{n} \cdot \mathrm{c}_{\mathrm{s}}}$
ex $49.48097 \mathrm{~N}^{*} \mathrm{~m}=100.1 \mathrm{MPa} \cdot \frac{10 \mathrm{E} 7 \mathrm{~mm}^{4}}{0.34 \cdot 595 \mathrm{~mm}}$
16) Unit Stress in Compressive Reinforcing Steel
$f \mathrm{f} \mathrm{f}_{\mathrm{sc}}=2 \cdot \mathrm{n} \cdot \mathrm{B}_{\mathrm{M}} \cdot \frac{\mathrm{c}_{\mathrm{sc}}}{\mathrm{I}_{\mathrm{A}}}$
ex $8.489052 \mathrm{MPa}=2 \cdot 0.34 \cdot 49.5 \mathrm{kN}^{*} \mathrm{~m} \cdot \frac{25.22 \mathrm{~mm}}{10 \mathrm{Emm}^{4}}$
17) Unit Stress in Extreme Fiber of Concrete
$f x f_{\text {fiber concrete }}=B_{M} \cdot \frac{K_{d}}{I_{A}}$
ex $49.599 \mathrm{MPa}=49.5 \mathrm{kN}^{*} \mathrm{~m} \cdot \frac{100.2 \mathrm{~mm}}{10 \mathrm{E} 7 \mathrm{~mm}^{4}}$
18) Unit Stress in Tensile Reinforcing Steel
$f x f_{\text {unit stress }}=n \cdot B_{M} \cdot \frac{c_{s}}{I_{A}}$
ex $100.1385 \mathrm{MPa}=0.34 \cdot 49.5 \mathrm{kN}^{*} \mathrm{~m} \cdot \frac{595 \mathrm{~mm}}{10 \mathrm{Emm}^{4}}$

Variables Used

- A Area of Tension Reinforcement (Square Meter)
- $\mathbf{A}_{\mathbf{s}}$ Area of Steel required (Square Millimeter)
- $\mathbf{A}_{\mathbf{s}}$ Area of Compression Reinforcement (Square Millimeter)
- b Beam Width (Millimeter)
- $\mathbf{B}_{\mathbf{M}}$ Bending Moment of Considered Section (Kilonewton Meter)
- $\mathbf{C}_{\mathbf{b}}$ Total Compression on Beam (Newton)
- $\mathbf{C}_{\mathbf{c}}$ Total Compression on Concrete (Newton)
- $\mathbf{C}_{\mathbf{s}}$ Distance Neutral to Tensile Reinforcing Steel (Millimeter)
- $\mathbf{C}_{\mathbf{s}^{\prime}}$ Force on Compressive Steel (Newton)
- $\mathbf{C}_{\mathbf{s c}}$ Distance Neutral to Compressive Reinforcing Steel (Millimeter)
- d Distance to Centroid of Tensile Steel (Millimeter)
- d' Effective Cover (Millimeter)
- D Distance to Centroid of Compressive Steel (Millimeter)
- $D_{\text {centroid }}$ Centroidal Distance of Tension Reinforcement (Millimeter)
- $\mathbf{f e c}_{\mathrm{ec}}$ Stress in Extreme Compression Surface (Megapascal)
- $\mathbf{f}_{\text {fiber }}$ concrete Unit Stress in Fiber of Concrete (Megapascal)
- $\mathbf{f}_{\mathbf{s}}$ Stress in Compressive Steel (Megapascal)
- $\mathbf{f}_{\mathbf{s c}}$ Unit Stress in Compressive Reinforcing Steel (Megapascal)
- $\mathbf{F}_{\mathbf{T}}$ Force on Tension Steel (Newton)
- \mathbf{f}_{TS} Tensile Stress in Steel (Kilogram-Force per Square Meter)
- $\mathbf{f}_{\text {unit stress }}$ Unit Stress in Tensile Reinforcing Steel (Megapascal)
- $\mathbf{f s c}_{\text {ratio }}$ Tensile to Compressive Stress Ratio
- $\mathrm{I}_{\mathbf{A}}$ Moment of Inertia of Beam (Millimeter ${ }^{4}$)
- ITB Moment of Inertia Transformed Beam (Kilogram Square Meter)
- j Constant j
- $\mathbf{J}_{\mathbf{d}}$ Distance between Reinforcements (Millimeter)
- k Ratio of Depth
- K Constant k
- $\mathbf{K}_{\mathbf{d}}$ Distance from Compression Fiber to NA (Millimeter)
- $\mathrm{m}_{\text {Elastic }}$ Modular Ratio for Elastic Shortening
- $\mathbf{M}_{\mathbf{R}}$ Moment Resistance in Compression (Newton Meter)
- $\mathbf{M}_{\mathbf{s}}{ }_{\mathbf{s}}$ Moment Resistance of Compressive Steel (Kilonewton Meter)
- $\mathbf{M}_{\text {TS }}$ Moment Resistance of Tensile Steel (Kilonewton Meter)
- $\mathbf{M b}_{\mathbf{R}}$ Bending Moment (Newton Meter)
- \mathbf{n} Elasticity Ratio of Steel to Concrete
- $\mathbf{W}_{\mathbf{b}}$ Width of Beam (Millimeter)
- ρ^{\prime} Value of ρ^{\prime}
- ρ_{T} Tension Reinforcement Ratio
- ρ Compression Reinforcement Ratio

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Millimeter (mm^{2}), Square Meter $\left(\mathrm{m}^{2}\right)$

Area Unit Conversion

- Measurement: Pressure in Megapascal (MPa), Kilogram-Force per Square Meter (kgf/m²) Pressure Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Moment of Inertia in Kilogram Square Meter ($\mathrm{kg} \cdot \mathrm{m}^{2}$) Moment of Inertia Unit Conversion
- Measurement: Moment of Force in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$), Kilonewton Meter ($\mathrm{kN}^{*} \mathrm{~m}$) Moment of Force Unit Conversion
- Measurement: Second Moment of Area in Millimeter ${ }^{4}\left(\mathrm{~mm}^{4}\right)$ Second Moment of Area Unit Conversion

Check other formula lists

- Doubly Reinforced Rectangular Sections
- Singly Reinforced Sections Formulas

Formulas
Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

