

Doubly Reinforced Rectangular Sections Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 18 Doubly Reinforced Rectangular Sections Formulas

()

7) Stress in Tensile Steel to Stress in Extreme Compression Surface Ratio
$$\mathbb{C}$$

(Open Calculator \mathbb{C}
($fsc_{ratio} = \frac{k}{2} \cdot \left(\rho_T - \left(\frac{\rho' \cdot (K_d - d')}{D_{centroid} - K_d}\right)\right)$)
($fsc_{ratio} = \frac{k}{2} \cdot \left(12.9 - \left(\frac{0.031 \cdot (100.2mm - 50.01mm)}{51.01mm - 100.2mm}\right)\right)$)
($fsc_{ratio} = \frac{k}{2} \cdot \left(12.9 - \left(\frac{0.031 \cdot (100.2mm - 50.01mm)}{51.01mm - 100.2mm}\right)\right)$)
($fsc_{rat} = \frac{k}{2} \cdot C_c$)
($fsc_{rat} = \frac{k}{2} \cdot \frac{1A}{2 \cdot n \cdot B_M}$
($fsc_{rac} = \frac{f_{ac}}{2 \cdot \frac{1A}{2 \cdot n \cdot B_M}}$
($fsc_{rac} = \frac{f_{ac}}{2 \cdot \frac{1A}{2 \cdot n \cdot B_M}}$
($fsc_{rat} = \frac{f_{aber}}{61ber concrete} \cdot \frac{1A}{B_M}$
($fsc_{rat} = \frac{f_{aber}}{61ber concrete} \cdot \frac{1A}{B_M}$
($fsc_{rat} = \frac{f_{aber}}{100.202mm} = 49.6MPa \cdot \frac{10E7mm^4}{40.5kN^*m}$
($fsc_{rat} = \frac{f_{unit stress}}{n \cdot \frac{1A}{M}}$
($fsc_{rat} = \frac{f_{unit stress}}{n \cdot \frac{1A}{M}}$
($fsc_{rat} = \frac{f_{unit stress}}{n \cdot \frac{1A}{M}}$
($fsc_{rat} = \frac{f_{unit stress}}{n \cdot \frac{1A}{n \cdot B_M}}$
($fsc_{rat} = f_{unit stress} + \frac{1A}{n \cdot B_M}$
($fsc_{rat} = f_{unit stress} + \frac{1A}{n \cdot B_M}$
($fsc_{rat} = f_{unit stress} + \frac{1A}{n \cdot B_M}$

4/8

Variables Used

- A Area of Tension Reinforcement (Square Meter)
- As Area of Steel required (Square Millimeter)
- As' Area of Compression Reinforcement (Square Millimeter)
- **b** Beam Width (Millimeter)
- B_M Bending Moment of Considered Section (Kilonewton Meter)
- Cb Total Compression on Beam (Newton)
- Cc Total Compression on Concrete (Newton)
- Cs Distance Neutral to Tensile Reinforcing Steel (Millimeter)
- Cs' Force on Compressive Steel (Newton)
- Csc Distance Neutral to Compressive Reinforcing Steel (Millimeter)
- d Distance to Centroid of Tensile Steel (Millimeter)
- d' Effective Cover (Millimeter)
- D Distance to Centroid of Compressive Steel (Millimeter)
- Dcentroid Centroidal Distance of Tension Reinforcement (Millimeter)
- fec Stress in Extreme Compression Surface (Megapascal)
- fiber concrete Unit Stress in Fiber of Concrete (Megapascal)
- f's Stress in Compressive Steel (Megapascal)
- fsc Unit Stress in Compressive Reinforcing Steel (Megapascal)
- F_T Force on Tension Steel (Newton)
- f_{TS} Tensile Stress in Steel (Kilogram-Force per Square Meter)
- funit stress Unit Stress in Tensile Reinforcing Steel (Megapascal)
- fsc_{ratio} Tensile to Compressive Stress Ratio
- I_A Moment of Inertia of Beam (Millimeter⁴)
- ITB Moment of Inertia Transformed Beam (Kilogram Square Meter)
- j Constant j
- jd Distance between Reinforcements (Millimeter)
- k Ratio of Depth
- K Constant k
- Kd Distance from Compression Fiber to NA (Millimeter)
- melastic Modular Ratio for Elastic Shortening
- MR Moment Resistance in Compression (Newton Meter)
- M's Moment Resistance of Compressive Steel (Kilonewton Meter)
- M_{TS} Moment Resistance of Tensile Steel (Kilonewton Meter)

- Mb_R Bending Moment (Newton Meter)
- n Elasticity Ratio of Steel to Concrete
- W_b Width of Beam (Millimeter)
- **ρ'** Value of ρ'
- ρ_T Tension Reinforcement Ratio
- p Compression Reinforcement Ratio

7/8

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²), Square Meter (m²) Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa), Kilogram-Force per Square Meter (kgf/m²) Pressure Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Moment of Inertia in Kilogram Square Meter (kg·m²) Moment of Inertia Unit Conversion
- Measurement: Moment of Force in Newton Meter (N*m), Kilonewton Meter (kN*m) Moment of Force Unit Conversion
- Measurement: Second Moment of Area in Millimeter⁴ (mm⁴) Second Moment of Area Unit Conversion ☑

Check other formula lists

- Doubly Reinforced Rectangular Sections
 Formulas
- Singly Reinforced Sections Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/16/2023 | 5:03:42 AM UTC

Please leave your feedback here ...

