

Circular Sewer Section Running Full Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 37 Circular Sewer Section Running Full Formulas

Circular Sewer Section Running Full 🕑

1) Area of Cross-Section given Discharge 🕑

$$\mathbf{A} = rac{\mathbf{Q}}{\mathbf{V}}$$

(

$$5.407654 \text{m}^2 = \frac{32.5 \text{m}^3/\text{s}}{6.01 \text{m/s}}$$

2) Diameter of pipe given Area of Cross-section

$$\mathbf{E} \left[\mathbf{D}_{\text{pipe}} = \left(\frac{\mathbf{a}}{\left(\frac{\pi}{4}\right) \cdot \left(\left(\frac{\angle_{\text{central}}}{360 \cdot \frac{\pi}{180}} \right) - \left(\frac{\sin(\angle_{\text{central}})}{2 \cdot \pi} \right) \right)} \right)^{\frac{1}{2}} \right]$$

$$\mathbf{E} \left[\mathbf{A} = \left(\frac{\mathbf{a}}{\left(\frac{\pi}{4}\right) \cdot \left(\left(\frac{120^{\circ}}{360 \cdot \frac{\pi}{180}} \right) - \left(\frac{\sin(120^{\circ})}{2 \cdot \pi} \right) \right)} \right)^{\frac{1}{2}} \right]$$

3) Diameter of Pipe using Hydraulic Mean Depth 🕑

$$m{\kappa} egin{aligned} \mathbf{E} \mathbf{D}_{\mathrm{pipe}} &= rac{\mathbf{r}_{\mathrm{pf}}}{\left(rac{1}{4}
ight)\cdot\left(1-\left(rac{\left(360\cdotrac{\pi}{180}
ight)\cdot\sin\left(\angle_{\mathrm{central}}
ight)}{2\cdot\pi\cdot\angle_{\mathrm{central}}}
ight)
ight)} \end{aligned}$$

$$\textbf{ex} 21.82426 \text{m} = \frac{3.2 \text{m}}{\left(\frac{1}{4}\right) \cdot \left(1 - \left(\frac{(360 \cdot \frac{\pi}{180}) \cdot \sin(120^{\circ})}{2 \cdot \pi \cdot 120^{\circ}}\right)\right)}$$

4) Discharge when Pipe is Running Full 🚰

fx
$$\mathbf{Q} = \mathbf{V} \cdot \mathbf{A}$$

$$32.454 \mathrm{m^3/s} = 6.01 \mathrm{m/s} \cdot 5.4 \mathrm{m^2}$$

Open Calculator 🕑

Open Calculator 🗗

5) Hydraulic Mean Depth using Central Angle 🕑

$$\begin{aligned} \mathbf{fx} \mathbf{r}_{\mathrm{pf}} &= \left(\frac{\mathrm{D}_{\mathrm{pipe}}}{4}\right) \cdot \left(1 - \left(\frac{\left(360 \cdot \frac{\pi}{180}\right) \cdot \sin(\angle_{\mathrm{central}})}{2 \cdot \pi \cdot \angle_{\mathrm{central}}}\right)\right) \end{aligned}$$

$$ex 0.387092\mathrm{m} = \left(\frac{2.64\mathrm{m}}{4}\right) \cdot \left(1 - \left(\frac{\left(360 \cdot \frac{\pi}{180}\right) \cdot \sin(120^{\circ})}{2 \cdot \pi \cdot 120^{\circ}}\right)\right) \end{aligned}$$

6) Velocity while Running Full given Discharge 🗹

7) Area of Cross-section given Proportionate Area
(A)
$$A = \frac{a}{P_a}$$
(Open Calculator
(EX) $5.405405m^2 = \frac{3.8m^2}{0.703}$
(B) Proportionate Area given Area of Cross-section
(C) $A = \frac{a}{P_a}$
(Open Calculator
(C) $A = \frac{a}{P_a}$
(C) A

fx
$$P_a = \frac{a}{A}$$

ex $0.703704 = \frac{3.8m^2}{5.4m^2}$

9) Proportionate Area given Central Angle 🗹

$$\begin{aligned} & \mathbf{fx} \mathbf{P}_{\mathrm{a}} = \left(\left(\frac{\angle_{\mathrm{central}}}{360 \cdot \frac{\pi}{180}} \right) - \left(\frac{\sin(\angle_{\mathrm{central}})}{2 \cdot \pi} \right) \right) \\ & \mathbf{ex} \quad 0.195501 = \left(\left(\frac{120^{\circ}}{360 \cdot \frac{\pi}{180}} \right) - \left(\frac{\sin(120^{\circ})}{2 \cdot \pi} \right) \right) \end{aligned}$$

Proportionate Depth

10) Depth of Partial Flow given Proportionate Depth

fx
$$\mathbf{d} = \mathbf{P}_{\mathrm{d}} \cdot \mathbf{D}_{\mathrm{pipe}}$$

ex $2.19912m = 0.833 \cdot 2.64m$

11) Diameter of Pipe given Proportionate Depth 🕑

fx
$$D_{pipe} = \frac{d}{P_d}$$

ex
$$2.641056m = \frac{2.2m}{0.833}$$

12) Proportionate Depth given Central Angle 🕑

fx
$$\mathbf{P}_{\mathrm{d}} = \left(\frac{1}{2}\right) \cdot \left(1 - \cos\left(\frac{\angle_{\mathrm{central}}}{2}\right)\right)$$

ex $0.25 = \left(\frac{1}{2}\right) \cdot \left(1 - \cos\left(\frac{120^{\circ}}{2}\right)\right)$

13) Proportionate Depth given Diameter of Pipe

$$\mathbf{x} \mathbf{P}_{d} = \frac{d}{D_{pipe}}$$

$$\mathbf{x} \mathbf{0.833333} = \frac{2.2m}{2.64m}$$
Open Calculator (2)

Open Calculator 🕑

Open Calculator

Open Calculator

Proportionate Discharge 🕑

$$A = \frac{a \cdot V_s}{V \cdot P_q}$$
Open Calculator (*)

ex
$$5.406108$$
m² = $\frac{3.8$ m² · 4.6m/s}{6.01m/s · 0.538

15) Discharge when Pipe is Running Full using Proportionate Discharge 🕑

fx
$$Q = \left(\frac{q}{P_q}\right)$$
 Open Calculator C

ex $32.49071 \text{m}^3/\text{s} = \left(\frac{17.48 \text{m}^3/\text{s}}{0.538}\right)$

16) Proportionate Discharge given Area of Cross-Section C

fx
$$P_q = rac{V_s \cdot a}{V \cdot A}$$
 Open Calculator C

ex
$$0.538608 = rac{4.6 \mathrm{m/s} \cdot 3.8 \mathrm{m}^2}{6.01 \mathrm{m/s} \cdot 5.4 \mathrm{m}^2}$$

17) Proportionate Discharge given Central Angle 🕑

$$\mathbf{F}_{q} = \left(\left(\frac{\angle_{\text{central}}}{360 \cdot \frac{\pi}{180}} \right) - \left(\frac{\sin(\angle_{\text{central}})}{2 \cdot \pi} \right) \right) \cdot \left(1 - \frac{\left(360 \cdot \frac{\pi}{180} \right) \cdot \sin(\angle_{\text{central}})}{2 \cdot \pi \cdot \angle_{\text{central}}} \right) \right)$$

$$\mathbf{ex} \quad 0.114662 = \left(\left(\frac{120^{\circ}}{360 \cdot \frac{\pi}{180}} \right) - \left(\frac{\sin(120^{\circ})}{2 \cdot \pi} \right) \right) \cdot \left(1 - \frac{\left(360 \cdot \frac{\pi}{180} \right) \cdot \sin(120^{\circ})}{2 \cdot \pi \cdot 120^{\circ}} \right) \right)$$

18) Proportionate Discharge using Discharge when Pipe Running Full

fx
$$P_q = \frac{q}{Q}$$

$$\begin{array}{c} \textbf{ex} \ 0.537846 = \frac{17.48 \mathrm{m^3/s}}{32.5 \mathrm{m^3/s}} \end{array}$$

19) Velocity while Running Full given Proportionate Discharge 🕑

fx
$$V = rac{V_{s} \cdot a}{P_{q} \cdot A}$$

ex
$$6.016797 \mathrm{m/s} = rac{4.6 \mathrm{m/s} \cdot 3.8 \mathrm{m}^2}{0.538 \cdot 5.4 \mathrm{m}^2}$$

Proportionate Hydraulic Mean Depth 🕑

20) Hydraulic Mean Depth while Running Full given Proportionate Hydraulic Mean Depth 💪

fx
$$R_{rf} = \left(\frac{r_{pf}}{P_{hmd}}\right)$$

ex $5.203252m = \left(\frac{3.2m}{0.615}\right)$

21) Proportionate Hydraulic Mean Depth given Central Angle 🕑

$$\mathbf{fx} \mathbf{P}_{\rm hmd} = \left(1 - \frac{\left(360 \cdot \frac{\pi}{180}\right) \cdot \sin(\angle_{\rm central})}{2 \cdot \pi \cdot \angle_{\rm central}}\right)$$
$$\mathbf{ex} 0.586503 = \left(1 - \frac{\left(360 \cdot \frac{\pi}{180}\right) \cdot \sin(120^{\circ})}{2 \cdot \pi \cdot 120^{\circ}}\right)$$

Open Calculator

Open Calculator

22) Proportionate Hydraulic Mean Depth given Hydraulic Mean Depth while Running Partially Full

Proportionate Perimeter 🕑

23) Central Angle given Proportionate Perimeter 🕑

fx
$$\angle_{ ext{central}} = \left(ext{P}_{ ext{p}} \cdot \left(360 \cdot rac{\pi}{180}
ight)
ight)$$

$$\mathsf{ex} \ 187.2^{\circ} = \left(0.520 \cdot \left(360 \cdot \frac{\pi}{180}\right)\right)$$

24) Proportionate Perimeter given Central Angle 🕑

fx
$$P_p = \left(\frac{\angle_{central}}{360 \cdot \frac{\pi}{180}}\right)$$

ex $0.333333 = \left(\frac{120^{\circ}}{360 \cdot \frac{\pi}{180}}\right)$

25) Proportionate Perimeter given Wetted Perimeter

fx
$$P_p = \frac{P_w}{P}$$

ex $0.520833 = \frac{6.25m}{12m}$

Open Calculator 🕑

Proportionate Velocity C

26) Hydraulic Mean Depth while Running Full given Proportionate Velocity 🚰

fx
$$R_{rf} = \left(\frac{(r_{pf})^{\frac{2}{3}}}{P_v}\right)^{\frac{3}{2}}$$

ex $4.782531m = \left(\frac{(3.2m)^{\frac{2}{3}}}{0.765}\right)^{\frac{3}{2}}$

27) Proportionate Velocity given Central Angle 🕑

$$\mathbf{x} \mathbf{P}_{\mathrm{v}} = \left(1 - rac{\left(360 \cdot rac{\pi}{180}\right) \cdot \sin(\angle_{\mathrm{central}})}{2 \cdot \pi \cdot \angle_{\mathrm{central}}}
ight)^{rac{2}{3}}$$

ex
$$0.70067 = \left(1 - \frac{\left(360 \cdot \frac{\pi}{180}\right) \cdot \sin(120^{\circ})}{2 \cdot \pi \cdot 120^{\circ}}\right)^{\frac{2}{3}}$$

28) Proportionate Velocity given Roughness Coefficient 🗗

fx
$$\mathbf{P}_{\mathrm{v}} = \left(\frac{\mathrm{N}}{\mathrm{n}_{\mathrm{p}}}\right) \cdot \left(\frac{\mathrm{r}_{\mathrm{pf}}}{\mathrm{r}_{\mathrm{pf}}}\right)^{\frac{2}{3}}$$

ex $0.822222 = \left(\frac{0.74}{0.9}\right) \cdot \left(\frac{3.2\mathrm{m}}{3.2\mathrm{m}}\right)^{\frac{2}{3}}$

29) Proportionate Velocity given Velocity while Running Partially Full

$$\mathbf{f_x} = \frac{V_s}{V}$$

$$\mathbf{e_x} 0.765391 = \frac{4.6 \text{m/s}}{6.01 \text{m/s}}$$
Open Calculator

É

Open Calculator 🕑

Open Calculator 🕑

30) Proportionate Velocity when Roughness Coefficient does not Vary with Depth 🕑

$$\mathbf{\widehat{R}} \mathbf{P}_{v} = \left(\frac{\mathbf{r}_{pf}}{\mathbf{R}_{rf}}\right)^{\frac{2}{3}}$$

$$\mathbf{ex} 0.723488 = \left(\frac{3.2\mathrm{m}}{5.2\mathrm{m}}\right)^{\frac{2}{3}}$$

32) Velocity while Running Full given Proportionate Velocity 🕑

Wetted Perimeter 🕑

33) Central Angle given Wetted Perimeter 🕑

fx
$$\angle_{\text{central}} = \frac{P_{\text{w}} \cdot \left(360 \cdot \frac{\pi}{180}\right)}{\pi \cdot D_{\text{pipe}}}$$
ex $271.2868^{\circ} = \frac{6.25 \text{m} \cdot \left(360 \cdot \frac{\pi}{180}\right)}{\pi \cdot 2.64 \text{m}}$

Open Calculator 🕑

37) Wetted Perimeter while Running Full given Proportionate Perimeter

10/13

Variables Used

- ∠central Central Angle (Degree)
- **a** Area of Partially Full Sewers (Square Meter)
- A Area of Running Full Sewers (Square Meter)
- d Depth at Partial Flow (Meter)
- Dpipe Diameter of Pipe (Meter)
- N Roughness Coefficient for Running Full
- np Roughness Coefficient Partially Full
- P Wetted Perimeter (Meter)
- Pa Proportionate Area
- Pd Proportionate Depth
- Phmd Proportionate Hydraulic Mean Depth
- Pp Proportionate perimeter
- Pg Proportionate Discharge
- Pv Proportionate Velocity
- Pw Wetted Perimeter for Partial Flow (Meter)
- q Discharge when Pipe is Running Partially Full (Cubic Meter per Second)
- Q Discharge when Pipe is Running Full (Cubic Meter per Second)
- rpf Hydraulic Mean Depth for Partially Full (Meter)
- Rrf Hydraulic Mean Depth while Running Full (Meter)
- V Velocity While Running Full (Meter per Second)
- Vs Velocity in a Partially Running Sewer (Meter per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion

Check other formula lists	
Circular Sewer Section Running Full Formulas	Circular Sewer Section Running Partially Full Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/4/2024 | 11:20:10 AM UTC

Please leave your feedback here...