

Square Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 56 Square Formulas

Square 🗗

Area of Square

1) Area of Square

fx
$$A=l_{
m e}^2$$

 $\boxed{\mathbf{ex} \left[100 \mathrm{m}^2 = \left(10 \mathrm{m} \right)^2 \right]}$

 $\boxed{\textbf{ex}} \ 98 \text{m}^{\scriptscriptstyle 2} = 2 \cdot (7 \text{m})^2$

 $98\text{m}^2 = \frac{1}{2} \cdot (14\text{m})^2$

Open Calculator

Open Calculator

Open Calculator

Open Calculator

4) Area of Square given Diameter of Circumcircle

- $oldsymbol{ ilde{k}} oldsymbol{ ext{A}} = rac{ ext{D}_{ ext{c}}^2}{2}$
- $\boxed{98\mathrm{m}^{2}=\frac{\left(14\mathrm{m}\right)^{2}}{2}}$
- 98117 = -2
- 5) Area of Square given Diameter of Incircle
- fx $A=D_{
 m i}^2$ ex $100{
 m m}^2={(10{
 m m})}^2$
- 6) Area of Square given Inradius
- $f x f A = 4 \cdot r_i^2$
- $\boxed{\texttt{ex} \left[100 \text{m}^2 = 4 \cdot \left(5 \text{m}\right)^2\right]}$
- 7) Area of Square given Perimeter
- $\mathbf{A} = rac{1}{16} \cdot \mathrm{P}^2$
- $100 \mathrm{m}^2 = \frac{1}{16} \cdot (40 \mathrm{m})^2$

Diagonal of Square 2

- 8) Diagonal of Square
- fx $\mathrm{d} = \sqrt{2} \cdot \mathrm{l_e}$

Open Calculator 🖸

- = 14.14214 $m = \sqrt{2} \cdot 10 m$
- 9) Diagonal of Square given Area
- fx $d = \sqrt{2 \cdot A}$

Open Calculator

- ex $14.14214 \mathrm{m} = \sqrt{2 \cdot 100 \mathrm{m}^2}$
- 10) Diagonal of Square given Circumradius
- fx $d=2\cdot r_{c}$

Open Calculator

- $ex 14m = 2 \cdot 7m$
- 11) Diagonal of Square given Diameter of Circumcircle
- $\mathbf{f} \mathbf{x} = \frac{\mathrm{D_c}}{\mathrm{1}}$

Open Calculator

 $\boxed{14m = \frac{14m}{1}}$

Open Calculator

Open Calculator

Open Calculator

12) Diagonal of Square given Diameter of Incircle

fx $d = \sqrt{2} \cdot D_i$ = 14.14214m = $\sqrt{2} \cdot 10$ m

13) Diagonal of Square given Inradius 🗗

fx $d=2\cdot\sqrt{2}\cdot r_{i}$

 $| 14.14214m = 2 \cdot \sqrt{2} \cdot 5m |$

14) Diagonal of Square given Perimeter 🗗

fx $d = rac{P}{2 \cdot \sqrt{2}}$

= 14.14214m = $\frac{40\text{m}}{2 \cdot \sqrt{2}}$ Diameter of Square

Diameter of Circumcircle of Square

15) Diameter of Circumcircle of Square fx $D_{
m c} = \sqrt{2} \cdot l_{
m e}$

= 14.14214= $\sqrt{2} \cdot 10 m$

© calculatoratoz.com. A softusvista inc. venture!

16) Diameter of Circumcircle of Square given Area

fx $D_c = \sqrt{2 \cdot A}$

Open Calculator 2

ex $14.14214 \mathrm{m} = \sqrt{2 \cdot 100 \mathrm{m}^2}$

17) Diameter of Circumcircle of Square given Circumradius

fx $D_{
m c}=2\cdot {
m r_c}$

Open Calculator 2

 $| 14m = 2 \cdot 7m$

18) Diameter of Circumcircle of Square given Diagonal 🗗

 $\mathbf{f}\mathbf{x} \left[\mathrm{D_c} = rac{\mathrm{d}}{\mathrm{1}}
ight]$

Open Calculator 2

 $14m = \frac{14m}{1}$

19) Diameter of Circumcircle of Square given Diameter of Incircle

fx $\left| \mathrm{D_c} = \sqrt{2} \cdot \mathrm{D_i}
ight|$

Open Calculator 2

[200] $[14.14214 \mathrm{m}] = \sqrt{2} \cdot 10 \mathrm{m}$

20) Diameter of Circumcircle of Square given Inradius 💪

fx $D_{
m c} = 2 \cdot \sqrt{2} \cdot {
m r_i}$

Open Calculator

 $| 14.14214m = 2 \cdot \sqrt{2} \cdot 5m |$

21) Diameter of Circumcircle of Square given Perimeter

Open Calculator

Open Calculator

Open Calculator G

Open Calculator 2

ex $14.14214 \mathrm{m} = rac{40 \mathrm{m}}{2 \cdot \sqrt{2}}$

Diameter of Incircle of Square

22) Diameter of Incircle of Square

$$\boxed{10\text{m} = \frac{10\text{m}}{1}}$$

23) Diameter of Incircle of Square given Area 🔽

$$\boxed{\text{ex} \ 10\text{m} = \sqrt{100\text{m}^2}}$$

24) Diameter of Incircle of Square given Circumradius

fx
$$D_{
m i} = \sqrt{2} \cdot r_{
m c}$$

$$\boxed{\texttt{ex} \ 9.899495 \texttt{m} = \sqrt{2} \cdot 7 \texttt{m}}$$

25) Diameter of Incircle of Square given Diagonal

Open Calculator

26) Diameter of Incircle of Square given Diameter of Circumcircle

 $\mathrm{D_i} = rac{\mathrm{D_c}}{\sqrt{2}}$

Open Calculator

 $= \frac{9.899495 \text{m}}{\sqrt{2}}$

27) Diameter of Incircle of Square given Inradius

fx $D_{
m i}=2\cdot r_{
m i}$

Open Calculator

ex $10 \mathrm{m} = 2 \cdot 5 \mathrm{m}$

28) Diameter of Incircle of Square given Perimeter

extstyle ext

Open Calculator

 $\boxed{10\mathrm{m} = \frac{40\mathrm{m}}{4}}$

Edge of Square

29) Edge Length of Square given Area

fx
$$l_{e}=\sqrt{A}$$

Open Calculator

$$\boxed{10\mathrm{m} = \sqrt{100\mathrm{m}^2}}$$

30) Edge Length of Square given Circumradius

Open Calculator

$$\boxed{\textbf{ex} \left[9.899495\text{m} = \sqrt{2} \cdot 7\text{m}\right]}$$

31) Edge Length of Square given Diagonal 🛂

Open Calculator

$= \frac{9.899495 \text{m}}{\sqrt{2}}$

32) Edge Length of Square given Diameter of Circumcircle

$$9.899495m = \frac{14m}{\sqrt{2}}$$

Open Calculator 2

33) Edge Length of Square given Diameter of Incircle 🗗

$$\boxed{10\mathrm{m} = \frac{10\mathrm{m}}{1}}$$

34) Edge Length of Square given Inradius 🗗

fx $m l_e = 2 \cdot r_i$

Open Calculator

35) Edge Length of Square given Perimeter 🖸

fx $l_{
m e}=rac{
m P}{4}$

 $10m = \frac{40m}{4}$

Perimeter of Square

 $\left[\mathbf{fx}
ight] \mathrm{P} = 4 \cdot \mathrm{l_e}$

 $| 40m = 4 \cdot 10m$

37) Perimeter of Square given Area

fx $P=4\cdot\sqrt{A}$

Open Calculator

Open Calculator

Open Calculator

Open Calculator 2

Open Calculator

 $\boxed{\text{ex}} \ 40 \text{m} = 4 \cdot \sqrt{100 \text{m}^2}$

38) Perimeter of Square given Circumradius

fx $P=4\cdot\sqrt{2}\cdot r_{
m c}$

 $| \mathbf{ex} | 39.59798$ m $= 4 \cdot \sqrt{2} \cdot 7$ m

fx $P=2\cdot\sqrt{2}\cdot d$

39) Perimeter of Square given Diagonal

ex $39.59798m = 2 \cdot \sqrt{2} \cdot 14m$

fx $P=2\cdot\sqrt{2}\cdot D_{c}$

[8] 39.59798m = $2 \cdot \sqrt{2} \cdot 14$ m

40) Perimeter of Square given Diameter of Circumcircle

41) Perimeter of Square given Diameter of Incircle

fx $P=4\cdot D_i$

 $\boxed{\text{ex}} \ 40\text{m} = 4 \cdot 10\text{m}$

42) Perimeter of Square given Inradius

fx $P = 8 \cdot r_i$

Open Calculator 🚰

 $\boxed{\texttt{ex}} \ 40 \text{m} = 8 \cdot 5 \text{m}$

Radius of Square &

Circumradius of Square

- 43) Circumradius of Square
- fx $m r_c = rac{l_e}{\sqrt{2}}$

Open Calculator 🗗

- $= \frac{10m}{\sqrt{2}}$
- 44) Circumradius of Square given Area
- $\mathbf{f}_{\mathbf{c}}$ $\mathbf{r}_{\mathrm{c}}=\sqrt{rac{\mathrm{A}}{2}}$
- $ext{ex} 7.071068 ext{m} = \sqrt{rac{100 ext{m}^2}{2}}$

45) Circumradius of Square given Diagonal

Open Calculator

46) Circumradius of Square given Diameter of Circumcircle

Open Calculator

 $\boxed{7m = \frac{14m}{2}}$

47) Circumradius of Square given Diameter of Incircle

Open Calculator 🗗

48) Circumradius of Square given Inradius

49) Circumradius of Square given Perimeter

fx
$$m r_c = rac{P}{4 \cdot \sqrt{2}}$$

Open Calculator 🚰

Open Calculator 2

Open Calculator G

$$= \frac{7.071068 \text{m}}{4 \cdot \sqrt{2}}$$

Inradius of Square

50) Inradius of Square

$$5m = \frac{10m}{2}$$

51) Inradius of Square given Area

$$\mathbf{r}_{\mathrm{i}}=rac{\sqrt{\mathrm{A}}}{2}$$

$$\boxed{\mathbf{5m} = \frac{\sqrt{100m^2}}{2}}$$

Open Calculator 2

Open Calculator 2

52) Inradius of Square given Circumradius 🗗

Open Calculator

 $\boxed{\texttt{ex}} 4.949747 \mathrm{m} = \frac{7 \mathrm{m}}{\sqrt{2}}$

53) Inradius of Square given Diagonal

54) Inradius of Square given Diameter of Circumcircle 🗗

- $4.949747m = \frac{14m}{2 \cdot \sqrt{2}}$

55) Inradius of Square given Diameter of Incircle

56) Inradius of Square given Perimeter

$$\mathbf{f}\mathbf{x}$$
 $\mathbf{r}_{\mathrm{i}}=rac{\mathbf{P}}{8}$

$$5m = \frac{40m}{8}$$

Variables Used

- A Area of Square (Square Meter)
- d Diagonal of Square (Meter)
- **D**_c Diameter of Circumcircle of Square (Meter)
- **D**_i Diameter of Incircle of Square (Meter)
- Ie Edge Length of Square (Meter)
- P Perimeter of Square (Meter)
- r_c Circumradius of Square (Meter)
- ri Inradius of Square (Meter)

17/20

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Meter (m)

 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion

Check other formula lists

- Annulus Formulas
- Antiparallelogram Formulas
- Arrow Hexagon Formulas
- Astroid Formulas
- Bulge Formulas
- Cardioid Formulas
- Circular Arc Quadrangle
 Formulas
- Concave Pentagon Formulas
- Concave Quadrilateral Formulas
- Concave Regular Hexagon
 Formulas
- Concave Regular Pentagon
 Formulas
- Crossed Rectangle Formulas
- Cut Rectangle Formulas
- Cyclic Quadrilateral Formulas
- Cycloid Formulas
- Decagon Formulas
- Dodecagon Formulas
- Double Cycloid Formulas
- Fourstar Formulas
- Frame Formulas
- Golden Rectangle Formulas 🗗
- Grid Formulas
- H Shape Formulas

- Half Yin-Yang Formulas
- Heart Shape Formulas
- Hendecagon Formulas
- Heptagon Formulas
- Hexadecagon Formulas
- Hexagon Formulas
- Hexagram Formulas 🖒
- House Shape Formulas
- 🔹 Hyperbola Formulas 🖸
- Hypocycloid Formulas
- Isosceles Trapezoid Formulas
 - Koch Curve Formulas
- L Shape Formulas
- Line Formulas
- Lune Formulas
- N-gon Formulas
- Nonagon Formulas
- Octagon Formulas
- Octagram Formulas
- Open Frame Formulas
- Parallelogram Formulas
- Pentagon Formulas
- Pentagram Formulas
- Polygram Formulas
- Quadrilateral Formulas
- Quarter Circle Formulas
- Rectangle Formulas

20/20

- Rectangular Hexagon
 Formulas
- Regular Polygon Formulas
- Reuleaux Triangle Formulas
- Rhombus Formulas
- Right Trapezoid Formulas
- Round Corner Formulas
- Salinon Formulas
- Semicircle Formulas
- Sharp Kink Formulas
- Square Formulas

- Star of Lakshmi Formulas
- Stretched Hexagon Formulas
- T Shape Formulas
- Tangential Quadrilateral Formulas
- Trapezoid Formulas
- Tricorn Formulas
- Tri-equilateral Trapezoid
 Formulas
- Truncated Square Formulas
- Unicursal Hexagram_Formulas
- X Shape Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/17/2023 | 7:03:49 AM UTC

Please leave your feedback here...

