

Flow Velocity in Sewers and Drains Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

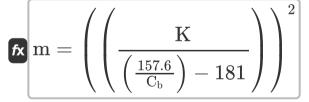
Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Flow Velocity in Sewers and Drains Formulas

Flow Velocity in Sewers and Drains

Bazin's Formula 🗗


1) Chezy's Constant by Bazin's Formula

$$extbf{K} extbf{C}_{ ext{b}} = \left(rac{157.6}{181 + \left(rac{ ext{K}}{\sqrt{ ext{m}}}
ight)}
ight)$$

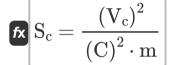
Open Calculator 🚰

ex
$$0.867233 = \left(\frac{157.6}{181 + \left(\frac{2.3}{\sqrt{10\text{m}}}\right)}\right)$$

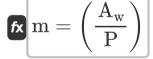
2) Hydraulic Mean Depth given Chezy's Constant by Bazin's Formula

Open Calculator


$$= \left(\left(\frac{2.3}{\left(\frac{157.6}{0.8672} \right) - 181} \right) \right)^{2}$$


Chezy's Formula 🗗

3) Chezy's Constant given Velocity of Flow by Chezy's Formula


ex
$$14.97024 = \frac{5.01 \mathrm{m/s}}{\sqrt{0.0112 \cdot 10 \mathrm{m}}}$$

4) Hydraulic Gradient given Velocity of Flow by Chezy's Formula

$$oxed{ex} 0.011156 = rac{(5.01 ext{m/s})^2}{{(15)}^2 \cdot 10 ext{m}}$$

5) Hydraulic Mean Radius of Channel

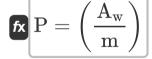
$$\boxed{10\mathrm{m} = \left(\frac{120\mathrm{m}^2}{12\mathrm{m}}\right)}$$

6) Hydraulic Mean Radius of Channel given Velocity of Flow by Chezy's Formula

 $\mathbf{m} = rac{(\mathrm{V_c})^2}{{(\mathrm{C})^2 \cdot \mathrm{S_c}}}$

Open Calculator

$$= \frac{(5.01 \text{m/s})^2}{(15)^2 \cdot 0.0112}$$

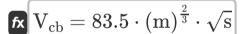

7) Velocity of Flow by Chezy's Formula

Open Calculator

ex
$$5.01996 \mathrm{m/s} = 15 \cdot \sqrt{0.0112 \cdot 10 \mathrm{m}}$$

8) Wetted Perimeter with known Hydraulic Mean Radius of Channel

$$\boxed{\mathbf{ex}} \ 12\mathrm{m} = \left(\frac{120\mathrm{m}^2}{10\mathrm{m}}\right)$$


Crimp and Burge's Formula 🗗

9) Bed Slope of Sewer given Flow Velocity by Crimp and Burge's Formula

$$\mathbf{f}\mathbf{x} = \left(rac{V_{cb}}{83.5 \cdot (m)^{rac{2}{3}}}
ight)^2$$

Open Calculator 🛂

10) Flow Velocity by Crimp and Burge's Formula

Open Calculator 🗗

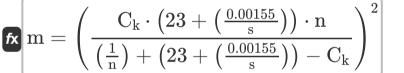
ex
$$12.25612 \mathrm{m/s} = 83.5 \cdot (10 \mathrm{m})^{rac{2}{3}} \cdot \sqrt{0.001}$$

11) Hydraulic Mean Depth given Flow Velocity by Crimp and Burge's Formula

$$\mathbf{m} = \left(rac{\mathrm{V_{cb}}}{\sqrt{\mathrm{s}\cdot 83.5}}
ight)^{rac{3}{2}}$$

Open Calculator 🗗

$$= 2.992506 \text{m} = \left(\frac{12.25 \text{m/s}}{\sqrt{0.001} \cdot 83.5}\right)^{\frac{3}{2}}$$


Kutter's Formula 🗗

12) Chezy's Constant by Kutter's Formula

 $\mathbf{C}_{\mathrm{k}} = rac{\left(23 + \left(rac{0.00155}{\mathrm{s}}
ight)
ight) + \left(rac{1}{\mathrm{n}}
ight)}{1 + \left(23 + \left(rac{0.00155}{\mathrm{s}}
ight)
ight) \cdot \left(rac{\mathrm{n}}{\sqrt{\mathrm{m}}}
ight)}$

Open Calculator 🚰

13) Hydraulic Mean Depth given Chezy's Constant by Kutter's Formula

Open Calculator 🚰

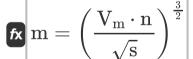
Manning's Formula 🗗

14) Bed Slope of Sewer given Flow Velocity by Manning's Formula 🗗

 $\mathbf{f}\mathbf{x} = \left(rac{V_{\mathrm{m}} \cdot \mathbf{n}}{(\mathrm{m})^{rac{2}{3}}}
ight)^{2}$

Open Calculator 🚰

ex $0.000999 = \left(\frac{9.78 \mathrm{m/s} \cdot 0.015}{(10 \mathrm{m})^{\frac{2}{3}}}\right)^2$


15) Flow Velocity by Manning's Formula

 $V_{\mathrm{m}} = \left(rac{1}{n}
ight) \cdot (\mathrm{m})^{rac{2}{3}} \cdot \sqrt{\mathrm{s}}$

Open Calculator

 $ext{ex} \left[9.785328 ext{m/s} = \left(rac{1}{0.015}
ight) \cdot (10 ext{m})^{rac{2}{3}} \cdot \sqrt{0.001}
ight]$

16) Hydraulic Mean Depth given Flow Velocity by Manning's Formula 🗹

Open Calculator 🗗

 $= 2.991833 \text{m} = \left(\frac{9.78 \text{m/s} \cdot 0.015}{\sqrt{0.001}}\right)^{\frac{3}{2}}$

17) Rugosity Coefficient given Flow Velocity by Manning's Formula 🛂

 $\mathbf{f} \mathbf{x} \left| \mathbf{n} = \left(rac{1}{V_{\mathrm{m}}}
ight) \cdot (\mathbf{m})^{rac{2}{3}} \cdot \sqrt{\mathbf{s}}
ight|$

Open Calculator 🗗

 $oxed{ex} 0.015008 = \left(rac{1}{9.78 ext{m/s}}
ight) \cdot (10 ext{m})^{rac{2}{3}} \cdot \sqrt{0.001}$

William Hazen's Formula

18) Bed Slope of Sewer given Flow Velocity by William Hazen's Formula

 $\left|\mathbf{x}
ight| \mathbf{s} = \left(rac{V_{wh}}{0.85\cdot\left(\mathbf{m}
ight)^{0.63}\cdot C_{H}}
ight)^{rac{1}{0.54}}$

Open Calculator 🗗

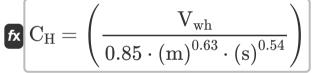
 $oxed{ex} 0.001 = \left(rac{10.43 ext{m/s}}{0.85 \cdot \left(10 ext{m}
ight)^{0.63} \cdot 119.91}
ight)^{rac{1}{0.54}}$

19) Flow Velocity by William Hazen's Formula 🚰

fx $V_{
m wh} = 0.85 \cdot {
m C_H \cdot (m)}^{0.63} \cdot {
m (s)}^{0.54}$

Open Calculator

 $ext{ex} 10.42976 ext{m/s} = 0.85 \cdot 119.91 \cdot (10 ext{m})^{0.63} \cdot (0.001)^{0.54}$


20) Hydraulic Mean Depth given Flow Velocity by William Hazen's Formula

$$\mathbf{m} = \left(rac{V_{wh}}{0.85 \cdot C_{H} \cdot (s)^{0.54}}
ight)^{rac{1}{0.63}}$$

Open Calculator 🗗

$$\boxed{ \mathbf{ex} \ 10.00036 \mathrm{m} = \left(\frac{10.43 \mathrm{m/s}}{0.85 \cdot 119.91 \cdot \left(0.001 \right)^{0.54}} \right)^{\frac{1}{0.63}} }$$

21) William Hazen Coefficient given Flow Velocity by William Hazen's Formula

Open Calculator 🖒

ex
$$119.9128 = \left(\frac{10.43 \mathrm{m/s}}{0.85 \cdot (10 \mathrm{m})^{0.63} \cdot (0.001)^{0.54}} \right)$$

Variables Used

- A_w Wetted Area (Square Meter)
- C Chezy's Constant
- Ch Chezy's Constant by Bazin's Formula
- CH William Hazen Coefficient
- C_k Chezy's Constant by Kutter's Formula
- K Bazin's Constant
- m Hydraulic Mean Depth (Meter)
- n Rugosity Coefficient
- P Wetted Perimeter (Meter)
- S Bed Slope of Channel
- Sc Slope for Chezy's Formula
- V_c Flow Velocity for Chezy's Formula (Meter per Second)
- V_{ch} Flow Velocity for Crimp and Burge's Formula (Meter per Second)
- V_m Flow Velocity for Manning's Formula (Meter per Second)
- V_{wh} Flow Velocity for William Hazen's Formula (Meter per Second)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)

 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion

Check other formula lists

- Flow Velocity in Sewers and Drains Formulas
- Hydraulic Mean Depth
 Formulas
- Minimum Velocity to be Generated in Sewers Formulas
- Proportionate Hydraulic Elements for Circular Sewers Formulas
- Roughness Coefficient Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/19/2024 | 9:57:22 AM UTC

Please leave your feedback here...

