

Minimum Velocity to be Generated in Sewers Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 29 Minimum Velocity to be Generated in Sewers Formulas

Minimum Velocity to be Generated in Sewers

1) Chezy's Constant given Friction Factor 🕑

fx
$$\mathrm{C} = \sqrt{rac{8\cdot[\mathrm{g}]}{\mathrm{f'}}}$$

ex
$$15.01467 = \sqrt{rac{8 \cdot [\mathrm{g}]}{0.348}}$$

2) Chezy's Constant given Self Cleansing Velocity 🖸

fx
$$\mathbf{C} = rac{\mathbf{v}_{\mathrm{s}}}{\sqrt{\mathbf{k}\cdot\mathbf{d}^{'}\cdot(\mathbf{G}-1)}}$$

ex
$$15.02082 = \frac{0.114 \text{m/s}}{\sqrt{0.04 \cdot 4.8 \text{mm} \cdot (1.3 - 1)}}$$

3) Cross Sectional Area of Flow given Hydraulic Mean Radius of Channel

fx
$$\mathbf{A}_{\mathrm{w}} = (\mathrm{m} \cdot \mathrm{P})$$

ex
$$120 \mathrm{m}^2 = (10 \mathrm{m} \cdot 12 \mathrm{m})^2$$

Open Calculator

Open Calculator

4) Friction Factor given Self Cleansing Velocity
(a) Friction Factor given Self Cleansing Velocity
(b)
$$f' = \frac{8 \cdot [g] \cdot k \cdot d' \cdot (G - 1)}{(v_s)^2}$$

(c) $0.347715 = \frac{8 \cdot [g] \cdot 0.04 \cdot 4.8 \text{mm} \cdot (1.3 - 1)}{(0.114 \text{m/s})^2}$
(c) Rugosity Coefficient given Self Cleansing Velocity
(c) $fx = \left(\frac{1}{v_s}\right) \cdot (m)^{\frac{1}{6}} \cdot \sqrt{k \cdot d' \cdot (G - 1)}$
(c) $0.097718 = \left(\frac{1}{0.114 \text{m/s}}\right) \cdot (10m)^{\frac{1}{6}} \cdot \sqrt{0.04 \cdot 4.8 \text{mm} \cdot (1.3 - 1)}$
(c) Unit Weight of Water given Hydraulic Mean Depth
(c) F_D
(c) $Open Calculator$

fx
$$\gamma_{w} = \frac{F_{D}}{m \cdot S}$$

ex 9983.333N/m³ = $\frac{11.98N}{10m \cdot 0.00012}$

ĺ

3/14

Diameter of Grain 🕑

7) Diameter of Grain for given Friction Factor 🕑

$$f_{\mathbf{x}} \begin{bmatrix} \frac{\left(\mathbf{v}_{s}\right)^{2}}{\frac{8 \cdot [g] \cdot \mathbf{k} \cdot (\mathbf{G} - 1)}{\mathbf{f}^{\prime}}} \\ e_{\mathbf{x}} \end{bmatrix} \begin{bmatrix} 4.803934 \text{mm} = \frac{\left(0.114 \text{m/s}\right)^{2}}{\frac{8 \cdot [g] \cdot 0.04 \cdot (1.3 - 1)}{0.348}} \\ \textbf{3) Diameter of Grain given Rugosity Coefficient} \end{bmatrix}$$

$$f_{\mathbf{x}} \begin{bmatrix} \mathbf{d}^{\prime} = \left(\frac{1}{\mathbf{k} \cdot (\mathbf{G} - 1)}\right) \cdot \left(\frac{\mathbf{v}_{s} \cdot \mathbf{n}}{(\mathbf{m})^{\frac{1}{6}}}\right)^{2} \\ \textbf{0.113104} \text{mm} = \left(\frac{1}{0.04 \cdot (1.3 - 1)}\right) \cdot \left(\frac{0.114 \text{m/s} \cdot 0.015}{(10 \text{m})^{\frac{1}{6}}}\right)^{2} \end{bmatrix}$$

9) Diameter of Grain given Self Cleaning Invert Slope 子

$$f_{\mathbf{X}} \mathbf{d}' = \frac{\mathbf{sL}_{\mathrm{I}}}{\left(\frac{\mathrm{k}}{\mathrm{m}}\right) \cdot (\mathrm{G} - 1)}$$

$$e_{\mathbf{X}} \mathbf{4.8mm} = \frac{5.76\mathrm{E}^{2}-6}{\left(\frac{0.04}{10\mathrm{m}}\right) \cdot (1.3 - 1)}$$

10) Diameter of Grain given Self Cleansing velocity

$$\mathbf{fx} \quad \mathbf{d}' = \frac{\left(\frac{\mathbf{v}_{s}}{\mathbf{C}}\right)^{2}}{\mathbf{k} \cdot (\mathbf{G} - 1)}$$

$$\mathbf{ex} \quad 4.813333 \text{mm} = \frac{\left(\frac{0.114 \text{m/s}}{15}\right)^{2}}{0.04 \cdot (1.3 - 1)}$$

$$\mathbf{Drag Force \mathbf{C}}$$
11) Angle of Inclination given drag force **C**

$$\mathbf{fx} \quad \alpha_{i} = ar \sin\left(\frac{\mathbf{F}_{D}}{\gamma_{w} \cdot (\mathbf{G} - 1) \cdot (1 - \mathbf{n}) \cdot \mathbf{t}}\right)$$

$$\mathbf{ex} \quad 59.83416^{\circ} = ar \sin\left(\frac{11.98\text{N}}{9810\text{N/m}^{3} \cdot (1.3 - 1) \cdot (1 - 0.015) \cdot 4.78\text{mm}}\right)$$
12) Bed Slope of Channel given Drag Force **C**

$$\mathbf{fx} \quad \mathbf{S} = \frac{\mathbf{F}_{D}}{\gamma_{w} \cdot \mathbf{m}}$$

$$\mathbf{ex} \quad 0.000122 = \frac{11.98\text{N}}{9810\text{N/m}^{3} \cdot 10\text{m}}$$

6/14

17) Unit Weight of Water given Drag Force 🕑

$$\label{eq:gamma_w} \textbf{fx} \boxed{\gamma_w = \left(\frac{F_D}{(G-1)\cdot(1-n)\cdot t\cdot sin(\alpha_i)}\right)} \qquad \qquad \textbf{Open Calculator G}$$

ex
$$9793.565 \mathrm{N/m^3} = \left(rac{11.98 \mathrm{N}}{(1.3-1) \cdot (1-0.015) \cdot 4.78 \mathrm{mm} \cdot \sin(60^\circ)}
ight)$$

Hydraulic Mean Depth 🕑

18) Hydraulic Mean Depth given Self Cleaning Invert Slope 子

fx
$$\mathbf{m} = \left(rac{\mathbf{k}}{\mathrm{sL}_{\mathrm{I}}}
ight) \cdot (\mathrm{G}-1) \cdot \mathrm{d}^{'}$$

ex
$$10m = \left(\frac{0.04}{5.76E^{-6}}\right) \cdot (1.3 - 1) \cdot 4.8mm$$

19) Hydraulic Mean Depth given Self Cleansing Velocity 🕑

$$\mathbf{fx} \mathbf{m} = \left(\frac{\mathbf{v}_{s} \cdot \mathbf{n}}{\sqrt{\mathbf{k} \cdot \mathbf{d}' \cdot (\mathbf{G} - 1)}}\right)^{6}$$

$$\mathbf{ex} 0.000131\mathbf{m} = \left(\frac{0.114\mathbf{m}/s \cdot 0.015}{\sqrt{0.04 \cdot 4.8\mathbf{mm} \cdot (1.3 - 1)}}\right)^{6}$$

20) Hydraulic Mean Depth of Channel given Drag Force 💪

23) Self Cleansing Velocity given Friction Factor 🕑

fx
$$v_{s} = \sqrt{rac{8\cdot[g]\cdot k\cdot d^{'}\cdot(G-1)}{f'}}$$

ex
$$0.113953 \text{m/s} = \sqrt{rac{8 \cdot [\text{g}] \cdot 0.04 \cdot 4.8 \text{mm} \cdot (1.3 - 1)}{0.348}}$$

24) Self Cleansing Velocity given Rugosity Coefficient 🕑

$$\mathbf{v}_{\mathrm{s}} = \left(rac{1}{\mathrm{n}}
ight) \cdot (\mathrm{m})^{rac{1}{6}} \cdot \sqrt{\mathrm{k} \cdot \mathrm{d}^{'} \cdot (\mathrm{G}-1)}$$

ex
$$0.742654 \mathrm{m/s} = \left(rac{1}{0.015}
ight) \cdot (10 \mathrm{m})^{rac{1}{6}} \cdot \sqrt{0.04 \cdot 4.8 \mathrm{mm} \cdot (1.3-1)}$$

Specific Gravity of Sediment C

25) Specific Gravity of Sediment given Drag Force 🕑

Open Calculator

26) Specific Gravity of Sediment given Friction Factor 🕑

$$fx G = \left(\frac{(v_s)^2}{\frac{8 \cdot [g] \cdot k \cdot d'}{f'}}\right) + 1$$

$$ex 1.300246 = \left(\frac{(0.114 \text{m/s})^2}{\frac{8 \cdot [g] \cdot 0.04 \cdot 4.8 \text{mm}}{0.348}}\right) + 1$$

27) Specific Gravity of Sediment given Self Cleaning Invert Slope 🕑

fx
$$\mathbf{G} = \left(\frac{\mathrm{sL}_{\mathrm{I}}}{\left(\frac{\mathrm{k}}{\mathrm{m}}\right) \cdot \mathrm{d}^{'}}\right) + 1$$

$$1.3 = \left(\frac{0.101 - 0}{\left(\frac{0.04}{10\mathrm{m}}\right) \cdot 4.8\mathrm{mm}}\right) + 1$$

28) Specific Gravity of Sediment given Self Cleansing Velocity

$$f \times \mathbf{G} = \left(\frac{\left(\frac{\mathbf{v}_{s}}{\mathbf{C}}\right)^{2}}{\mathbf{d}' \cdot \mathbf{k}}\right) + 1$$

$$e \times \mathbf{1.300833} = \left(\frac{\left(\frac{0.114 \text{m/s}}{15}\right)^{2}}{4.8 \text{mm} \cdot 0.04}\right) + 1$$

ſ

29) Specific Gravity of Sediment given Self Cleansing Velocity and Rugosity Coefficient

$$fx G = \left(\frac{1}{k \cdot d'}\right) \cdot \left(\frac{v_s \cdot n}{(m)^{\frac{1}{6}}}\right)^2 + 1$$

$$ex 1.007069 = \left(\frac{1}{0.04 \cdot 4.8 \text{mm}}\right) \cdot \left(\frac{0.114 \text{m/s} \cdot 0.015}{(10 \text{m})^{\frac{1}{6}}}\right)^2 + 1$$

2

Variables Used

- Aw Wetted Area (Square Meter)
- C Chezy's Constant
- **d** Diameter of Particle (Millimeter)
- f' Friction Factor
- **F**_D Drag Force (Newton)
- G Specific Gravity of Sediment
- k Dimensional Constant
- **m** Hydraulic Mean Depth (Meter)
- n Rugosity Coefficient
- P Wetted Perimeter (Meter)
- S Bed Slope of a Sewer
- **sL** Self Cleaning Invert Slope
- t Volume per Unit Area (Millimeter)
- V_s Self Cleansing Velocity (Meter per Second)
- α_i Angle of Inclination of Plane to Horizontal (Degree)
- **γ**_w Unit Weight of Fluid (Newton per Cubic Meter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: **arsin**, arsin(Number) Arcsine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: **sqrt**, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm), Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Specific Weight in Newton per Cubic Meter (N/m³) Specific Weight Unit Conversion

Check other formula lists

- Flow Velocity in Sewers and Drains Formulas
- Hydraulic Mean Depth Formulas
- Minimum Velocity to be Generated in Sewers Formulas
- Proportionate Hydraulic Elements for Circular Sewers Formulas
- Roughness Coefficient
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/19/2024 | 9:58:04 AM UTC

Please leave your feedback here...

