
calculatoratoz.com

Ideal Gas Law Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 25 Ideal Gas Law Formulas

Ideal Gas Law ©

1) Amount of Gas taken by Ideal Gas Law
$f \mathrm{fx} \mathrm{m}_{\text {gas }}=\frac{\mathrm{M}_{\text {molar }} \cdot \mathrm{P}_{\text {gas }} \cdot \mathrm{V}}{[\mathrm{R}] \cdot \mathrm{T}_{\text {gas }}}$
ex $44.00674 \mathrm{~g}=\frac{44.01 \mathrm{~g} / \mathrm{mol} \cdot 101325 \mathrm{~Pa} \cdot 22.4 \mathrm{~L}}{[\mathrm{R}] \cdot 273 \mathrm{~K}}$
2) Density of Gas by Ideal Gas law
$\mathrm{fx} \rho_{\mathrm{gas}}=\frac{\mathrm{P}_{\text {gas }} \cdot \mathrm{M}_{\text {molar }}}{[\mathrm{R}] \cdot \mathrm{T}_{\text {gas }}}$
Open Calculator
ex $1.964586 \mathrm{~g} / \mathrm{L}=\frac{101325 \mathrm{~Pa} \cdot 44.01 \mathrm{~g} / \mathrm{mol}}{[\mathrm{R}] \cdot 273 \mathrm{~K}}$
3) Final Density of Gas by Ideal Gas Law
$f \mathrm{f} \mathrm{d}_{\mathrm{f}}=\frac{\frac{\mathrm{P}_{\mathrm{fin}}}{\mathrm{T}_{2}}}{\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}} \cdot \mathrm{T}_{1}}}$

4) Final Pressure of Gas by Ideal Gas Law
$f x \mathrm{P}_{\mathrm{fin}}=\left(\frac{\mathrm{P}_{\mathrm{i}} \cdot \mathrm{V}_{\mathrm{i}}}{\mathrm{T}_{1}}\right) \cdot\left(\frac{\mathrm{T}_{2}}{\mathrm{~V}_{2}}\right)$
ex $13.00205 \mathrm{~Pa}=\left(\frac{21 \mathrm{~Pa} \cdot 11.2 \mathrm{~L}}{298 \mathrm{~K}}\right) \cdot\left(\frac{313 \mathrm{~K}}{19 \mathrm{~L}}\right)$
5) Final Pressure of gas given Density
$f x \mathrm{P}_{\mathrm{fin}}=\left(\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}} \cdot \mathrm{T}_{1}}\right) \cdot\left(\mathrm{d}_{\mathrm{f}} \cdot \mathrm{T}_{2}\right)$
Open Calculator
ex $13.0118 \mathrm{~Pa}=\left(\frac{21 \mathrm{~Pa}}{1.19 \mathrm{~g} / \mathrm{L} \cdot 298 \mathrm{~K}}\right) \cdot(0.702 \mathrm{~g} / \mathrm{L} \cdot 313 \mathrm{~K})$
6) Final Temperature of Gas by Ideal Gas Law
$f \mathbf{x} \mathrm{~T}_{2}=\frac{\mathrm{P}_{\text {fin }} \cdot V_{2}}{\frac{P_{i} \cdot V_{\mathrm{i}}}{T_{1}}}$
ex $312.9507 \mathrm{~K}=\frac{13 \mathrm{~Pa} \cdot 19 \mathrm{~L}}{\frac{21 \mathrm{~Pa} \cdot 11.2 \mathrm{~L}}{298 \mathrm{~K}}}$
7) Final Temperature of Gas given Density
$\mathrm{fx} \mathrm{T}_{2}=\frac{\frac{\mathrm{P}_{\text {fin }}}{\mathrm{d}_{\mathrm{f}}}}{\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}} \cdot \mathrm{T}_{1}}}$
$\mathbf{e x} 312.716 \mathrm{~K}=\frac{\frac{13 \mathrm{~Pa}}{0.702 \mathrm{~g} / \mathrm{L}}}{\frac{21 \mathrm{~Pa}}{1.19 \mathrm{~g} / \mathrm{L} \cdot 298 \mathrm{~K}}}$
8) Final Volume of Gas by Ideal Gas Law
$\mathbf{f x} \mathrm{V}_{2}=\left(\frac{\mathrm{P}_{\mathrm{i}} \cdot \mathrm{V}_{\mathrm{i}}}{\mathrm{T}_{1}}\right) \cdot\left(\frac{\mathrm{T}_{2}}{\mathrm{P}_{\mathrm{fin}}}\right)$
Open Calculator
ex $19.00299 \mathrm{~L}=\left(\frac{21 \mathrm{~Pa} \cdot 11.2 \mathrm{~L}}{298 \mathrm{~K}}\right) \cdot\left(\frac{313 \mathrm{~K}}{13 \mathrm{~Pa}}\right)$
9) Initial Density of Gas by Ideal Gas Law
$\mathrm{fx} \mathrm{d}_{\mathrm{i}}=\frac{\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{T}_{1}}}{\frac{\mathrm{P}_{\mathrm{fin}}}{\mathrm{d}_{\mathrm{f}} \cdot \mathrm{T}_{2}}}$
ex $1.191081 \mathrm{~g} / \mathrm{L}=\frac{\frac{21 \mathrm{~Pa}}{298 \mathrm{~K}}}{\frac{13 \mathrm{~Pa}}{0.702 \mathrm{~g} / \mathrm{L} \cdot 313 \mathrm{~K}}}$
10) Initial Pressure of Gas by Ideal Gas Law
$f x \mathrm{P}_{\mathrm{i}}=\left(\frac{\mathrm{P}_{\mathrm{fin}} \cdot \mathrm{V}_{2}}{\mathrm{~T}_{2}}\right) \cdot\left(\frac{\mathrm{T}_{1}}{\mathrm{~V}_{\mathrm{i}}}\right)$
ex $20.99669 \mathrm{~Pa}=\left(\frac{13 \mathrm{~Pa} \cdot 19 \mathrm{~L}}{313 \mathrm{~K}}\right) \cdot\left(\frac{298 \mathrm{~K}}{11.2 \mathrm{~L}}\right)$
11) Initial Pressure of Gas given Density
$f \mathrm{f} \quad \mathrm{P}_{\mathrm{i}}=\left(\frac{\mathrm{P}_{\mathrm{fin}}}{\mathrm{d}_{\mathrm{f}} \cdot \mathrm{T}_{2}}\right) \cdot\left(\mathrm{d}_{\mathrm{i}} \cdot \mathrm{T}_{1}\right)$
Open Calculator
ex $20.98095 \mathrm{~Pa}=\left(\frac{13 \mathrm{~Pa}}{0.702 \mathrm{~g} / \mathrm{L} \cdot 313 \mathrm{~K}}\right) \cdot(1.19 \mathrm{~g} / \mathrm{L} \cdot 298 \mathrm{~K})$
12) Initial Temperature of Gas by Ideal Gas law
$f \mathbf{x} \mathrm{~T}_{1}=\frac{\mathrm{P}_{\mathrm{i}} \cdot \mathrm{V}_{\mathrm{i}}}{\frac{\mathrm{P}_{\mathrm{fin}} \cdot \mathrm{V}_{2}}{\mathrm{~T}_{2}}}$
$\boldsymbol{e x} 298.047 \mathrm{~K}=\frac{21 \mathrm{~Pa} \cdot 11.2 \mathrm{~L}}{\frac{13 \mathrm{~Pa} \cdot 19 \mathrm{~L}}{313 \mathrm{~K}}}$
13) Initial Temperature of Gas given Density $\boxed{\square}$
$\mathrm{fx} \mathrm{T}_{1}=\frac{\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}}}}{\frac{\mathrm{P}_{\mathrm{fin}}}{\mathrm{d}_{\mathrm{f}} \cdot \mathrm{T}_{2}}}$
$\operatorname{ex} 298.2706 \mathrm{~K}=\frac{\frac{21 \mathrm{~Pa}}{1.19 \mathrm{~g} / \mathrm{L}}}{\frac{13 \mathrm{~Pa}}{0.702 \mathrm{~g} / \mathrm{L} \cdot 313 \mathrm{~K}}}$
14) Initial Volume of Gas by Ideal Gas Law
$f \mathbf{x} \mathrm{~V}_{\mathrm{i}}=\left(\frac{\mathrm{P}_{\text {fin }} \cdot \mathrm{V}_{2}}{\mathrm{~T}_{2}}\right) \cdot\left(\frac{\mathrm{T}_{1}}{\mathrm{P}_{\mathrm{i}}}\right)$
ex $11.19824 \mathrm{~L}=\left(\frac{13 \mathrm{~Pa} \cdot 19 \mathrm{~L}}{313 \mathrm{~K}}\right) \cdot\left(\frac{298 \mathrm{~K}}{21 \mathrm{~Pa}}\right)$
15) Molecular Weight of Gas by Ideal Gas Law
$f \times \mathrm{M}_{\text {molar }}=\frac{\mathrm{m}_{\text {gas }} \cdot[\mathrm{R}] \cdot \mathrm{T}_{\text {gas }}}{\mathrm{P}_{\text {gas }} \cdot \mathrm{V}}$
ex $44.00326 \mathrm{~g} / \mathrm{mol}=\frac{44 \mathrm{~g} \cdot[\mathrm{R}] \cdot 273 \mathrm{~K}}{101325 \mathrm{~Pa} \cdot 22.4 \mathrm{~L}}$
16) Molecular Weight of Gas given Density by Ideal Gas Law
$f \mathbf{f x} \mathrm{M}_{\text {molar }}=\frac{\rho_{\text {gas }} \cdot[\mathrm{R}] \cdot \mathrm{T}_{\text {gas }}}{\mathrm{P}_{\text {gas }}}$
ex $43.90726 \mathrm{~g} / \mathrm{mol}=\frac{1.96 \mathrm{~g} / \mathrm{L} \cdot[\mathrm{R}] \cdot 273 \mathrm{~K}}{101325 \mathrm{~Pa}}$
17) Number of Moles of Gas by Ideal Gas Law
$f \mathbf{x} \mathrm{~N}_{\text {moles }}=\frac{\mathrm{P}_{\text {gas }} \cdot \mathrm{V}}{[\mathrm{R}] \cdot \mathrm{T}_{\text {gas }}}$
Open Calculator 〔
ex $0.999926=\frac{101325 \mathrm{~Pa} \cdot 22.4 \mathrm{~L}}{[\mathrm{R}] \cdot 273 \mathrm{~K}}$
18) Pressure by Ideal Gas Law
$f x \mathrm{P}_{\text {gas }}=\frac{\mathrm{N}_{\text {moles }} \cdot[\mathrm{R}] \cdot \mathrm{T}_{\text {gas }}}{\mathrm{V}}$
Open Calculator ©
ex $100319.2 \mathrm{~Pa}=\frac{0.99 \cdot[\mathrm{R}] \cdot 273 \mathrm{~K}}{22.4 \mathrm{~L}}$
19) Pressure of Gas given Density by Ideal Gas law
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{P}} \mathrm{gas}=\frac{\rho_{\mathrm{gas}} \cdot[\mathrm{R}] \cdot \mathrm{T}_{\mathrm{gas}}}{\mathrm{M}_{\mathrm{molar}}}$
Open Calculator
ex $101088.4 \mathrm{~Pa}=\frac{1.96 \mathrm{~g} / \mathrm{L} \cdot[\mathrm{R}] \cdot 273 \mathrm{~K}}{44.01 \mathrm{~g} / \mathrm{mol}}$
20) Pressure of Gas given Molecular Weight of Gas by Ideal Gas law
$f x \mathrm{P}_{\text {gas }}=\frac{\left(\frac{\mathrm{m}_{\text {gas }}}{\mathrm{M}_{\text {molar }}}\right) \cdot[\mathrm{R}] \cdot \mathrm{T}_{\text {gas }}}{\mathrm{V}}$
ex $101309.5 \mathrm{~Pa}=\frac{\left(\frac{44 \mathrm{~g}}{44.01 \mathrm{~g} / \mathrm{mol}}\right) \cdot[\mathrm{R}] \cdot 273 \mathrm{~K}}{22.4 \mathrm{~L}}$
21) Temperature of Gas by Ideal Gas Law
$\mathrm{fx}_{\mathrm{x}} \mathrm{T}_{\text {gas }}=\frac{\mathrm{P}_{\text {gas }} \cdot \mathrm{V}}{\mathrm{N}_{\text {moles }} \cdot[\mathrm{R}]}$
Open Calculator
ex $275.7371 \mathrm{~K}=\frac{101325 \mathrm{~Pa} \cdot 22.4 \mathrm{~L}}{0.99 \cdot[\mathrm{R}]}$
22) Temperature of Gas given Density by Ideal Gas Law
$f \mathrm{fx} \mathrm{T}_{\text {gas }}=\frac{\mathrm{P}_{\text {gas }} \cdot \mathrm{M}_{\text {molar }}}{[\mathrm{R}] \cdot \rho_{\text {gas }}}$
ex $273.6388 \mathrm{~K}=\frac{101325 \mathrm{~Pa} \cdot 44.01 \mathrm{~g}}{[\mathrm{R}] \cdot 1.96 \mathrm{~g} / \mathrm{L}}$
23) Temperature of Gas given Molecular Weight of Gas by Ideal Gas law
$f_{\mathbf{x}} \mathrm{T}_{\text {gas }}=\frac{\mathrm{P}_{\text {gas }} \cdot \mathrm{V}}{\left(\frac{\mathrm{m}_{\text {gas }}}{\mathrm{M}_{\text {molar }}}\right) \cdot[\mathrm{R}]}$

Open Calculator ©

ex $273.0418 \mathrm{~K}=\frac{101325 \mathrm{~Pa} \cdot 22.4 \mathrm{~L}}{\left(\frac{44 \mathrm{~g}}{44.01 \mathrm{~g} / \mathrm{mol}}\right) \cdot[\mathrm{R}]}$
24) Volume of Gas from Ideal Gas Law
$f \times \mathrm{V}=\frac{\mathrm{N}_{\text {moles }} \cdot[\mathrm{R}] \cdot \mathrm{T}_{\text {gas }}}{\mathrm{P}_{\text {gas }}}$
Open Calculator
ex $22.17764 \mathrm{~L}=\frac{0.99 \cdot[\mathrm{R}] \cdot 273 \mathrm{~K}}{101325 \mathrm{~Pa}}$
25) Volume of Gas given Molecular Weight of Gas by Ideal Gas Law
$\mathrm{fx} \mathrm{V}=\frac{\left(\frac{\mathrm{m}_{\text {gas }}}{\mathrm{M}_{\text {molar }}}\right) \cdot[\mathrm{R}] \cdot \mathrm{T}_{\text {gas }}}{\mathrm{P}_{\text {gas }}}$
$\operatorname{ex} 22.39657 \mathrm{~L}=\frac{\left(\frac{44 \mathrm{~g}}{44.01 \mathrm{~g} / \mathrm{mol}}\right) \cdot[\mathrm{R}] \cdot 273 \mathrm{~K}}{101325 \mathrm{~Pa}}$

Variables Used

- $\mathbf{d}_{\mathbf{f}}$ Final Density of Gas (Gram per Liter)
- $\mathbf{d}_{\mathbf{i}}$ Initial Density of Gas (Gram per Liter)
- $\mathbf{m}_{\text {gas }}$ Mass of Gas (Gram)
- $\mathbf{M}_{\text {molar }}$ Molar Mass (Gram Per Mole)
- $\mathbf{N}_{\text {moles }}$ Number of Moles
- $\mathbf{P}_{\text {fin }}$ Final Pressure of Gas (Pascal)
- $\mathbf{P}_{\text {gas }}$ Pressure of Gas (Pascal)
- $\mathbf{P}_{\mathbf{i}}$ Initial Pressure of Gas (Pascal)
- $\mathbf{T}_{\mathbf{1}}$ Initial Temperature of Gas for Ideal Gas (Kelvin)
- $\mathbf{T}_{\mathbf{2}}$ Final Temperature of Gas for Ideal Gas (Kelvin)
- $\mathbf{T}_{\text {gas }}$ Temperature of Gas (Kelvin)
- V Volume of Gas (Liter)
- \mathbf{V}_{2} Final Volume of Gas for Ideal Gas (Liter)
- $\mathbf{V}_{\mathbf{i}}$ Initial Volume of Gas (Liter)
- $\boldsymbol{\rho}_{\text {gas }}$ Density of Gas (Gram per Liter)

Constants, Functions, Measurements used

- Constant: [R], 8.31446261815324 Joule / Kelvin * Mole Universal gas constant
- Measurement: Weight in Gram (g) Weight Unit Conversion
- Measurement: Temperature in Kelvin (K)

Temperature Unit Conversion $\sqrt{ }$

- Measurement: Volume in Liter (L)

Volume Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Density in Gram per Liter (g/L)

Density Unit Conversion \mathcal{G}

- Measurement: Molar Mass in Gram Per Mole (g/mol) Molar Mass Unit Conversion

Check other formula lists

- Avogadro's Law Formulas \longleftarrow
- Boyle's Law Formulas
- Charle's Law Formulas \mathbb{Z}
- Dalton's Law Formulas
- Gay Lussac's law Formulas
- Graham's Law Formulas
- Ideal Gas Law Formulas
- Important Formulas of Gaseous State

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

