

Moving Loads and Influence Lines for Beams Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 32 Moving Loads and Influence Lines for Beams Formulas

Moving Loads and Influence Lines for Beams

Calculation of Deflection C

1) Deflection for Channel or Z Bar when Load in Middle

fx
$$\delta = rac{\mathrm{Wp}\cdot\left(\mathrm{L}^{3}
ight)}{53\cdot\mathrm{A}_{\mathrm{cs}}\cdot\left(\mathrm{d}_{\mathrm{b}}^{2}
ight)}$$

ex
$$31475.28in = rac{1.25kN \cdot ((10.02ft)^3)}{53 \cdot 13m^2 \cdot ((10.01in)^2)}$$

2) Deflection for Channel or Z Bar when Load is Distributed 🕑

$$\delta = \frac{W_{d} \cdot (L^{3})}{85 \cdot A_{cs} \cdot (d_{b}^{2})}$$

$$\text{ex} 15700.76 \text{in} = \frac{1.00001 \text{kN} \cdot ((10.02 \text{ft})^{3})}{85 \cdot 13 \text{m}^{2} \cdot ((10.01 \text{in})^{2})}$$

Open Calculator

Open Calculator

3) Deflection for Deck Beam given Load in Middle 🕑

$$\delta = \frac{Wp \cdot (L^3)}{50 \cdot A_{cs} \cdot (d_b^2)}$$

$$\delta = \frac{Wp \cdot (L^3)}{50 \cdot A_{cs} \cdot (d_b^2)}$$
ex $33363.79in = \frac{1.25kN \cdot ((10.02ft)^3)}{50 \cdot 13m^2 \cdot ((10.01in)^2)}$
4) Deflection for Deck Beam when Load is Distributed C
$$\delta = \frac{W_d \cdot (L^3)}{80 \cdot A_{cs} \cdot (d_b^2)}$$

$$\delta = \frac{W_d \cdot (L^3)}{80 \cdot A_{cs} \cdot (d_b^2)}$$

$$\delta = \frac{1.00001kN \cdot ((10.02ft)^3)}{80 \cdot 13m^2 \cdot ((10.01in)^2)}$$
5) Deflection for Even Legged Angle when Load in Middle C
$$\delta = Wp \cdot \frac{L^3}{32 \cdot A_{cs} \cdot d_b^2}$$

$$Open Calculator C$$

ex
$$52130.92$$
in = 1.25 kN $\cdot \frac{(10.02 \text{ft})^3}{32 \cdot 13$ m² $\cdot (10.01$ in)²

6) Deflection for Even Legged Angle when Load is Distributed 🕑

$$\delta = \frac{W_{d} \cdot L^{3}}{52 \cdot A_{cs} \cdot d_{b}^{2}}$$

$$\delta = \frac{W_{d} \cdot L^{3}}{52 \cdot A_{cs} \cdot d_{b}^{2}}$$

$$25664.71 \text{in} = \frac{1.00001 \text{kN} \cdot (10.02 \text{ft})^{3}}{52 \cdot 13 \text{m}^{2} \cdot (10.01 \text{in})^{2}}$$
7) Deflection for Hollow Cylinder when Load in Middle \checkmark

$$\delta = \frac{Wp \cdot L^{3}}{24 \cdot (A_{cs} \cdot (d_{b}^{2}) - a \cdot (d^{2})))}$$

$$\delta = \frac{1.25 \text{kN} \cdot (10.02 \text{ft})^{3}}{24 \cdot (13 \text{m}^{2} \cdot ((10.01 \text{in})^{2}) - 10 \text{in}^{2} \cdot ((10 \text{in})^{2}))}$$
8) Deflection for Hollow Cylinder when Load is Distributed \checkmark

$$\delta = \frac{W_{d} \cdot L^{3}}{38 \cdot (A_{cs} \cdot (d_{b}^{2}) - a \cdot (d^{2}))}$$

$$\delta = \frac{W_{d} \cdot L^{3}}{38 \cdot (A_{cs} \cdot (d_{b}^{2}) - a \cdot (d^{2}))}$$

$$\delta = \frac{1.00001 \text{kN} \cdot (10.02 \text{ft})^{3}}{38 \cdot (13 \text{m}^{2} \cdot ((10.01 \text{in})^{2}) - 10 \text{in}^{2} \cdot ((10 \text{in})^{2}))}$$

9) Deflection for Hollow Rectangle given Load in Middle 🕑

10) Deflection for Hollow Rectangle when Load is Distributed 🕑

fx
$$\delta = \mathrm{W_d} \cdot rac{\mathrm{L^3}}{52 \cdot \left(\mathrm{A_{cs}} \cdot \mathrm{d_b^{-a}} \cdot \mathrm{d}^2
ight)}$$

$$igg| 25489.87 \mathrm{in} = 1.00001 \mathrm{kN} \cdot rac{(10.02 \mathrm{ft})^3}{52 \cdot \left(13 \mathrm{m}^2 \cdot (10.01 \mathrm{in})^{-10 \mathrm{in}^2} \cdot (10 \mathrm{in})^2
ight)}$$

11) Deflection for I Beam when Load in Middle 🕑

Open Calculator 🕑

Open Calculator

ex
$$28761.89in = \frac{1.25kN \cdot ((10.02ft)^3)}{58 \cdot 13m^2 \cdot ((10.01in)^2)}$$

 $\delta = rac{\mathrm{Wp}\cdot\left(\mathrm{L}^{3}
ight)}{58\cdot\mathrm{A}_{\mathrm{cs}}\cdot\left(\mathrm{d}_{\mathrm{b}}^{2}
ight)}$

ex

5/14

12) Deflection for I Beam when Load is Distributed 🕑

$$\delta = \frac{W_{d} \cdot (L^{3})}{93 \cdot A_{cs} \cdot (d_{b}^{2})}$$

$$(14350.16in = \frac{1.00001kN \cdot ((10.02ft)^{3})}{93 \cdot 13m^{2} \cdot ((10.01in)^{2})}$$

$$(13) \text{ Deflection for Solid Cylinder when Load in Middle }$$

$$(13) \frac{W_{b} \cdot L_{c}^{3}}{24 \cdot A_{cs} \cdot d_{b}^{2}}$$

$$(12) \frac{W_{b} \cdot L_{c}^{3}}{24 \cdot A_{cs} \cdot d_{b}^{2}}$$

$$(12) \frac{W_{b} \cdot L_{c}^{3}}{24 \cdot A_{cs} \cdot d_{b}^{2}}$$

$$(12) \frac{W_{b} \cdot L_{c}^{3}}{24 \cdot 13m^{2} \cdot (10.01in)^{2}}$$

$$(14) \text{ Deflection for Solid Cylinder when Load is Distributed }$$

$$(14) \text{ Deflection for Solid Cylinder when Load is Distributed }$$

$$\delta = \frac{W_{d} \cdot L_{c}^{3}}{38 \cdot A_{cs} \cdot d_{b}^{2}}$$

$$13127.32in = \frac{1.00001kN \cdot (2.2m)^{3}}{38 \cdot 13m^{2} \cdot (10.01in)^{2}}$$

15) Deflection for Solid Rectangle when Load in Middle 🕑

$$\delta = \frac{Wp \cdot L^3}{32 \cdot A_{cs} \cdot d_b^2}$$

$$\delta = \frac{1.25kN \cdot (10.02ft)^3}{32 \cdot 13m^2 \cdot (10.01in)^2}$$
16) Deflection for Solid Rectangle when Load is Distributed C
$$\delta = \frac{W_d \cdot L^3}{52 \cdot A_{cs} \cdot d_b^2}$$
Open Calculator C
$$\delta = \frac{W_d \cdot L^3}{52 \cdot A_{cs} \cdot d_b^2}$$

ex 25664.71in =
$$\frac{1.00001 \text{kN} \cdot (10.02 \text{ft})^3}{52 \cdot 13 \text{m}^2 \cdot (10.01 \text{in})^2}$$

Safe Loads 🕑

17) Greatest Safe Load for Channel or Z Bar when Load is at Middle

$$fx Wp = \frac{1525 \cdot A_{cs} \cdot d_b}{L}$$
Open Calculator C
$$ex 1.650435 kN = \frac{1525 \cdot 13m^2 \cdot 10.01in}{10.02ft}$$

18) Greatest Safe Load for Channel or Z Bar when Load is Distributed 🖸 Open Calculator $\mathrm{W_{d}} = rac{3050 \cdot \mathrm{A_{cs}} \cdot \mathrm{d_{b}}}{\mathrm{L}}$ 10.02ft 19) Greatest Safe Load for Deck Beam when Load in Middle 🕻 Open Calculator $\mathrm{Wp} = rac{1380 \cdot \mathrm{A_{cs}} \cdot \mathrm{d_b}}{\mathrm{L}}$ $1.493508 \mathrm{kN} = \frac{1380 \cdot 13 \mathrm{m}^2 \cdot 10.01 \mathrm{in}}{1000}$ ex 10.02ft 20) Greatest Safe Load for Deck Beam when Load is Distributed 🕻 Open Calculator $\mathrm{W_{d}} = rac{2760 \cdot \mathrm{A_{cs}} \cdot \mathrm{d_{b}}}{\mathrm{L}}$ 10.02ft 21) Greatest Safe Load for Even Legged Angle when Load is Distributed $W_{\rm d} = \frac{1.77 \cdot A_{\rm cs} \cdot d_{\rm b}}{L}$ Open Calculator ex 0.001916kN = $\frac{1.77 \cdot 13$ m² · 10.01in 10.02ft

8/14

22) Greatest Safe Load for Even Legged Angle when Load is in Middle C (Open Calculator C (N) $Wp = 885 \cdot A_{cs} \cdot \frac{d_b}{L}$

$$= 0.957793 \text{kN} = 885 \cdot 13 \text{m}^2 \cdot \frac{10.01 \text{in}}{10.02 \text{ft}}$$

23) Greatest Safe Load for Hollow Cylinder when Load in Middle 🕑

fx
$$Wp = rac{667 \cdot (A_{cs} \cdot d_b - a \cdot d)}{L}$$

Open Calculator 🕑

Open Calculator

$$= \frac{667 \cdot (13 \text{m}^2 \cdot 10.01 \text{in} - 10 \text{in}^2 \cdot 10 \text{in})}{10.02 \text{ft}}$$

24) Greatest Safe Load for Hollow Cylinder when Load is Distributed 🗹

$$\label{eq:Wd} \begin{split} \text{K} & W_d = \frac{1333 \cdot (A_{cs} \cdot d_b - a \cdot d)}{L} \\ \text{Open Calculator Constraints} \\ \text{Open Calculator Constraints}$$

25) Greatest Safe Load for Hollow Rectangle when Load in Middle 🗹

fx
$$Wp = rac{890 \cdot (A_{cs} \cdot d_b - a \cdot d)}{L}$$

ex $0.962727 \mathrm{kN} = rac{890 \cdot (13 \mathrm{m}^2 \cdot 10.01 \mathrm{in} - 10 \mathrm{in}^2 \cdot 10 \mathrm{in})}{10.02 \mathrm{ft}}$

26) Greatest Safe Load for Hollow Rectangle when Load is Distributed 🖸 fx $W_{\mathrm{d}} = 1780 \cdot rac{\mathrm{A_{cs}} \cdot \mathrm{d_b} - \mathrm{a} \cdot \mathrm{d}}{\mathrm{L_c}}$ Open Calculator 🕑 ex 2.672964kN = $1780 \cdot \frac{13$ m² $\cdot 10.01$ in - 10in² $\cdot 10$ in 2.2m 27) Greatest Safe Load for I Beam when Load in Middle 💪 Open Calculator $\mathrm{Wp} = rac{1795 \cdot \mathrm{A_{cs}} \cdot \mathrm{d_b}}{\mathrm{L}}$ ex 1.942643kN = $\frac{1795 \cdot 13$ m² · 10.01in 10.02ft 28) Greatest Safe Load for I Beam when Load is Distributed Open Calculator $\mathrm{W_{d}} = rac{3390 \cdot \mathrm{A_{cs}} \cdot \mathrm{d_{b}}}{\mathrm{L}}$ ex 3.668835kN = $\frac{3390 \cdot 13$ m² · 10.01in 10.02ft 29) Greatest Safe Load for Solid Cylinder when Load in Middle 🖸 Open Calculator $\mathrm{Wp} = rac{667 \cdot \mathrm{A_{cs}} \cdot \mathrm{d_b}}{\mathrm{L}}$ $0.721862 \mathrm{kN} = rac{667 \cdot 13 \mathrm{m}^2 \cdot 10.01 \mathrm{in}}{1000 \mathrm{km}^2 \cdot 10.01 \mathrm{in}}$ 10.02ft

10/14

 $\begin{array}{l} \textbf{ex} \\ 0.963204 \text{kN} = 890 \cdot 13 \text{m}^2 \cdot \frac{10.01 \text{in}}{10.02 \text{ft}} \end{array}$

32) Greatest Safe Load for Solid Rectangle when Load is Distributed

fx $\mathrm{W_d} = 1780 \cdot \mathrm{A_{cs}} \cdot rac{\mathrm{d_b}}{\mathrm{L}}$

ex
$$1.926409 \mathrm{kN} = 1780 \cdot 13 \mathrm{m}^2 \cdot rac{10.01 \mathrm{in}}{10.02 \mathrm{ft}}$$

Open Calculator 🕑

Variables Used

- **a** Interior Cross-Sectional Area of Beam (Square Inch)
- A_{cs} Cross Sectional Area of Beam (Square Meter)
- d Interior Depth of Beam (Inch)
- **d**_b Depth of Beam (Inch)
- L Length of Beam (Foot)
- L_c Distance between Supports (Meter)
- W_d Greatest Safe Distributed Load (Kilonewton)
- Wp Greatest Safe Point Load (Kilonewton)
- δ Deflection of Beam (Inch)

Constants, Functions, Measurements used

- Measurement: Length in Inch (in), Foot (ft), Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m²), Square Inch (in²) Area Unit Conversion
- Measurement: Force in Kilonewton (kN) Force Unit Conversion

Check other formula lists

 Moving Loads and Influence Lines for Beams Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/12/2023 | 9:15:12 PM UTC

Please leave your feedback here ...

