
calculatoratoz.com

unitsconverters.com

Moving Loads and Influence Lines for Beams Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 32 Moving Loads and Influence Lines for Beams Formulas

Moving Loads and Influence Lines for Beams

 4
Calculation of Deflection ©

1) Deflection for Channel or Z Bar when Load in Middle
$\mathrm{fx} \delta=\frac{\mathrm{Wp} \cdot\left(\mathrm{L}^{3}\right)}{53 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot\left(\mathrm{d}_{\mathrm{b}}^{2}\right)}$
Open Calculator
$\operatorname{ex} 31475.28 \mathrm{in}=\frac{1.25 \mathrm{kN} \cdot\left((10.02 \mathrm{ft})^{3}\right)}{53 \cdot 13 \mathrm{~m}^{2} \cdot\left((10.01 \mathrm{in})^{2}\right)}$
2) Deflection for Channel or Z Bar when Load is Distributed
$f \mathrm{fx} \delta=\frac{\mathrm{W}_{\mathrm{d}} \cdot\left(\mathrm{L}^{3}\right)}{85 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot\left(\mathrm{d}_{\mathrm{b}}^{2}\right)}$
Open Calculator
ex $15700.76 \mathrm{in}=\frac{1.00001 \mathrm{kN} \cdot\left((10.02 \mathrm{ft})^{3}\right)}{85 \cdot 13 \mathrm{~m}^{2} \cdot\left((10.01 \mathrm{in})^{2}\right)}$
3) Deflection for Deck Beam given Load in Middle
$f \mathbf{x} \delta=\frac{\mathrm{Wp} \cdot\left(\mathrm{L}^{3}\right)}{50 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot\left(\mathrm{d}_{\mathrm{b}}^{2}\right)}$

Open Calculator

ex $33363.79 \mathrm{in}=\frac{1.25 \mathrm{kN} \cdot\left((10.02 \mathrm{ft})^{3}\right)}{50 \cdot 13 \mathrm{~m}^{2} \cdot\left((10.01 \mathrm{in})^{2}\right)}$
4) Deflection for Deck Beam when Load is Distributed
$f \mathbf{x} \delta=\frac{\mathrm{W}_{\mathrm{d}} \cdot\left(\mathrm{L}^{3}\right)}{80 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot\left(\mathrm{d}_{\mathrm{b}}^{2}\right)}$
Open Calculator
ex $16682.06 \mathrm{in}=\frac{1.00001 \mathrm{kN} \cdot\left((10.02 \mathrm{ft})^{3}\right)}{80 \cdot 13 \mathrm{~m}^{2} \cdot\left((10.01 \mathrm{in})^{2}\right)}$
5) Deflection for Even Legged Angle when Load in Middle
$\mathrm{fx} \delta=\mathrm{Wp} \cdot \frac{\mathrm{L}^{3}}{32 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}^{2}}$
Open Calculator
ex $52130.92 \mathrm{in}=1.25 \mathrm{kN} \cdot \frac{(10.02 \mathrm{ft})^{3}}{32 \cdot 13 \mathrm{~m}^{2} \cdot(10.01 \mathrm{in})^{2}}$

目
6) Deflection for Even Legged Angle when Load is Distributed
$\mathbf{f x} \delta=\frac{\mathrm{W}_{\mathrm{d}} \cdot \mathrm{L}^{3}}{52 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}^{2}}$
Open Calculator
ex $25664.71 \mathrm{in}=\frac{1.00001 \mathrm{kN} \cdot(10.02 \mathrm{ft})^{3}}{52 \cdot 13 \mathrm{~m}^{2} \cdot(10.01 \mathrm{in})^{2}}$
7) Deflection for Hollow Cylinder when Load in Middle
$\mathrm{fx} \delta=\frac{\mathrm{Wp} \cdot \mathrm{L}^{3}}{24 \cdot\left(\mathrm{~A}_{\mathrm{cs}} \cdot\left(\mathrm{d}_{\mathrm{b}}^{2}\right)-\mathrm{a} \cdot\left(\mathrm{d}^{2}\right)\right)}$
Open Calculator
ex $69542.34 \mathrm{in}=\frac{1.25 \mathrm{kN} \cdot(10.02 \mathrm{ft})^{3}}{24 \cdot\left(13 \mathrm{~m}^{2} \cdot\left((10.01 \mathrm{in})^{2}\right)-10 \mathrm{in}^{2} \cdot\left((10 \mathrm{in})^{2}\right)\right)}$
8) Deflection for Hollow Cylinder when Load is Distributed
$f \mathbf{x} \delta=\frac{\mathrm{W}_{\mathrm{d}} \cdot \mathrm{L}^{3}}{38 \cdot\left(\mathrm{~A}_{\mathrm{cs}} \cdot\left(\mathrm{d}_{\mathrm{b}}^{2}\right)-\mathrm{a} \cdot\left(\mathrm{d}^{2}\right)\right)}$
Open Calculator

$$
\frac{1.00001 \mathrm{kN} \cdot(10.02 \mathrm{ft})^{3}}{38 \cdot\left(13 \mathrm{~m}^{2} \cdot\left((10.01 \mathrm{in})^{2}\right)-10 \mathrm{in}^{2} \cdot\left((10 \mathrm{in})^{2}\right)\right)}
$$

9) Deflection for Hollow Rectangle given Load in Middle

$$
\mathrm{fx} \delta=\frac{\mathrm{Wp} \cdot \mathrm{~L}^{3}}{32 \cdot\left(\left(\mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{~d}_{\mathrm{b}}^{2}\right)-\left(\mathrm{a} \cdot \mathrm{~d}^{2}\right)\right)}
$$

$$
\operatorname{ex} 52156.76 \mathrm{in}=\frac{1.25 \mathrm{kN} \cdot(10.02 \mathrm{ft})^{3}}{32 \cdot\left(\left(13 \mathrm{~m}^{2} \cdot(10.01 \mathrm{in})^{2}\right)-\left(10 \mathrm{in}^{2} \cdot(10 \mathrm{in})^{2}\right)\right)}
$$

10) Deflection for Hollow Rectangle when Load is Distributed

$$
\begin{aligned}
& f \mathrm{fx} \delta=\mathrm{W}_{\mathrm{d}} \cdot \frac{\mathrm{~L}^{3}}{52 \cdot\left(\mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{~d}_{\mathrm{b}}^{-\mathrm{a}} \cdot \mathrm{~d}^{2}\right)} \\
& \mathrm{ex} 25489.87 \mathrm{in}=1.00001 \mathrm{kN} \cdot \frac{(10.02 \mathrm{ft})^{3}}{52 \cdot\left(13 \mathrm{~m}^{2} \cdot(10.01 \mathrm{in})^{-10 \mathrm{in}^{2}} \cdot(10 \mathrm{in})^{2}\right)}
\end{aligned}
$$

11) Deflection for I Beam when Load in Middle
$f \mathrm{x}=\frac{\mathrm{Wp} \cdot\left(\mathrm{L}^{3}\right)}{58 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot\left(\mathrm{d}_{\mathrm{b}}^{2}\right)}$
Open Calculator
$\mathrm{ex} 28761.89 \mathrm{in}=\frac{1.25 \mathrm{kN} \cdot\left((10.02 \mathrm{ft})^{3}\right)}{58 \cdot 13 \mathrm{~m}^{2} \cdot\left((10.01 \mathrm{in})^{2}\right)}$
12) Deflection for I Beam when Load is Distributed
$\mathrm{fx} \delta=\frac{\mathrm{W}_{\mathrm{d}} \cdot\left(\mathrm{L}^{3}\right)}{93 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot\left(\mathrm{d}_{\mathrm{b}}^{2}\right)}$

Open Calculator

$\boldsymbol{e x} 14350.16 \mathrm{in}=\frac{1.00001 \mathrm{kN} \cdot\left((10.02 \mathrm{ft})^{3}\right)}{93 \cdot 13 \mathrm{~m}^{2} \cdot\left((10.01 \mathrm{in})^{2}\right)}$
13) Deflection for Solid Cylinder when Load in Middle

$$
\mathrm{fx} \delta=\frac{\mathrm{Wp} \cdot \mathrm{~L}_{\mathrm{c}}^{3}}{24 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{~d}_{\mathrm{b}}^{2}}
$$

ex $25980.9 \mathrm{in}=\frac{1.25 \mathrm{kN} \cdot(2.2 \mathrm{~m})^{3}}{24 \cdot 13 \mathrm{~m}^{2} \cdot(10.01 \mathrm{in})^{2}}$
14) Deflection for Solid Cylinder when Load is Distributed
$\mathbf{f x} \delta=\frac{\mathrm{W}_{\mathrm{d}} \cdot \mathrm{L}_{\mathrm{c}}^{3}}{38 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}^{2}}$
Open Calculator
ex $13127.32 \mathrm{in}=\frac{1.00001 \mathrm{kN} \cdot(2.2 \mathrm{~m})^{3}}{38 \cdot 13 \mathrm{~m}^{2} \cdot(10.01 \mathrm{in})^{2}}$
15) Deflection for Solid Rectangle when Load in Middle
$\mathbf{f x} \delta=\frac{\mathrm{Wp} \cdot \mathrm{L}^{3}}{32 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}^{2}}$
Open Calculator
ex $52130.92 \mathrm{in}=\frac{1.25 \mathrm{kN} \cdot(10.02 \mathrm{ft})^{3}}{32 \cdot 13 \mathrm{~m}^{2} \cdot(10.01 \mathrm{in})^{2}}$
16) Deflection for Solid Rectangle when Load is Distributed
$\mathrm{fx} \delta=\frac{\mathrm{W}_{\mathrm{d}} \cdot \mathrm{L}^{3}}{52 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}^{2}}$
Open Calculator
ex $25664.71 \mathrm{in}=\frac{1.00001 \mathrm{kN} \cdot(10.02 \mathrm{ft})^{3}}{52 \cdot 13 \mathrm{~m}^{2} \cdot(10.01 \mathrm{in})^{2}}$

Safe Loads

17) Greatest Safe Load for Channel or Z Bar when Load is at Middle
$\mathrm{fx} \mathrm{Wp}=\frac{1525 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
Open Calculator
ex $1.650435 \mathrm{kN}=\frac{1525 \cdot 13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
18) Greatest Safe Load for Channel or Z Bar when Load is Distributed
$f_{\mathrm{x}} \mathrm{W}_{\mathrm{d}}=\frac{3050 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
ex $3.300869 \mathrm{kN}=\frac{3050 \cdot 13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
19) Greatest Safe Load for Deck Beam when Load in Middle
fx $\mathrm{Wp}=\frac{1380 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
Open Calculator
ex $1.493508 \mathrm{kN}=\frac{1380 \cdot 13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
20) Greatest Safe Load for Deck Beam when Load is Distributed
$f_{\mathrm{x}} \mathrm{W}_{\mathrm{d}}=\frac{2760 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
Open Calculator
ex $2.987016 \mathrm{kN}=\frac{2760 \cdot 13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
21) Greatest Safe Load for Even Legged Angle when Load is Distributed E
$f \times \mathrm{W}_{\mathrm{d}}=\frac{1.77 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
Open Calculator
ex $0.001916 \mathrm{kN}=\frac{1.77 \cdot 13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
22) Greatest Safe Load for Even Legged Angle when Load is in Middle
$f_{\mathrm{x}} \mathrm{Wp}=885 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \frac{\mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
Open Calculator
ex $0.957793 \mathrm{kN}=885 \cdot 13 \mathrm{~m}^{2} \cdot \frac{10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
23) Greatest Safe Load for Hollow Cylinder when Load in Middle
$f \mathrm{fx} \mathrm{Wp}=\frac{667 \cdot\left(\mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}-\mathrm{a} \cdot \mathrm{d}\right)}{\mathrm{L}}$
Open Calculator
ex $0.721504 \mathrm{kN}=\frac{667 \cdot\left(13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}-10 \mathrm{in}^{2} \cdot 10 \mathrm{in}\right)}{10.02 \mathrm{ft}}$
24) Greatest Safe Load for Hollow Cylinder when Load is Distributed
$f \mathrm{fx} \mathrm{W}_{\mathrm{d}}=\frac{1333 \cdot\left(\mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}-\mathrm{a} \cdot \mathrm{d}\right)}{\mathrm{L}}$
Open Calculator
ex $1.441927 \mathrm{kN}=\frac{1333 \cdot\left(13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}-10 \mathrm{in}^{2} \cdot 10 \mathrm{in}\right)}{10.02 \mathrm{ft}}$
25) Greatest Safe Load for Hollow Rectangle when Load in Middle
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{Wp}}=\frac{890 \cdot\left(\mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}-\mathrm{a} \cdot \mathrm{d}\right)}{\mathrm{L}}$
Open Calculator
ex $0.962727 \mathrm{kN}=\frac{890 \cdot\left(13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}-10 \mathrm{in}^{2} \cdot 10 \mathrm{in}\right)}{10.02 \mathrm{ft}}$
26) Greatest Safe Load for Hollow Rectangle when Load is Distributed
$f_{\mathrm{x}} \mathrm{W}_{\mathrm{d}}=1780 \cdot \frac{\mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}-\mathrm{a} \cdot \mathrm{d}}{\mathrm{L}_{\mathrm{c}}}$
Open Calculator
ex $2.672964 \mathrm{kN}=1780 \cdot \frac{13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}-10 \mathrm{in}^{2} \cdot 10 \mathrm{in}}{2.2 \mathrm{~m}}$
27) Greatest Safe Load for I Beam when Load in Middle
f. $\mathrm{Wp}=\frac{1795 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$

Open Calculator
ex $1.942643 \mathrm{kN}=\frac{1795 \cdot 13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
28) Greatest Safe Load for I Beam when Load is Distributed
f. $\mathrm{W}_{\mathrm{d}}=\frac{3390 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
ex $3.668835 \mathrm{kN}=\frac{3390 \cdot 13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
29) Greatest Safe Load for Solid Cylinder when Load in Middle
$\mathrm{fx} \mathrm{Wp}=\frac{667 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
Open Calculator
ex $0.721862 \mathrm{kN}=\frac{667 \cdot 13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}}{10.02 \mathrm{ft}}$

30) Greatest Safe Load for Solid Cylinder when Load is Distributed \mathcal{G}

$$
\mathrm{fx}_{\mathrm{x}} \mathrm{~W}_{\mathrm{d}}=1333 \cdot \frac{\mathrm{~A}_{\mathrm{cs}} \cdot \mathrm{~d}_{\mathrm{b}}}{\mathrm{~L}}
$$

ex $1.442642 \mathrm{kN}=1333 \cdot \frac{13 \mathrm{~m}^{2} \cdot 10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
31) Greatest Safe Load for Solid Rectangle given Load in Middle
$f_{\mathrm{x}} \mathrm{Wp}=890 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \frac{\mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
Open Calculator
ex $0.963204 \mathrm{kN}=890 \cdot 13 \mathrm{~m}^{2} \cdot \frac{10.01 \mathrm{in}}{10.02 \mathrm{ft}}$
32) Greatest Safe Load for Solid Rectangle when Load is Distributed
$f \times W_{d}=1780 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \frac{\mathrm{d}_{\mathrm{b}}}{\mathrm{L}}$
ex $1.926409 \mathrm{kN}=1780 \cdot 13 \mathrm{~m}^{2} \cdot \frac{10.01 \mathrm{in}}{10.02 \mathrm{ft}}$

Variables Used

- a Interior Cross-Sectional Area of Beam (Square Inch)
- $\mathbf{A}_{\mathbf{c s}}$ Cross Sectional Area of Beam (Square Meter)
- d Interior Depth of Beam (Inch)
- $\mathbf{d}_{\mathbf{b}}$ Depth of Beam (Inch)
- L Length of Beam (Foot)
- L_{c} Distance between Supports (Meter)
- $\mathbf{W}_{\mathbf{d}}$ Greatest Safe Distributed Load (Kilonewton)
- Wp Greatest Safe Point Load (Kilonewton)
- $\bar{\delta}$ Deflection of Beam (Inch)

Constants, Functions, Measurements used

- Measurement: Length in Inch (in), Foot (ft), Meter (m) Length Unit Conversion $\sqrt{ }$
- Measurement: Area in Square Meter (m^{2}), Square Inch (in^{2}) Area Unit Conversion
- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

Check other formula lists

- Moving Loads and Influence

 Lines for Beams Formulas $\sqrt{ }$
Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

