



# Analysis of Prestressing and Bending Stresses Formulas

Calculators!

Examples!

**Conversions!** 

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...







# Analysis of Ultimate Strength 🕑





 $\begin{array}{c} \hline \textbf{ex} 20.08032 \text{mm}^2 = \frac{4.35 \text{kN}}{0.87 \cdot 249 \text{MPa}} \end{array}$ 

6) Characteristic Tensile Strength of Prestressing Tendons for Known Tensile Strength of Section

$$fx F_{pkf} = \frac{P_{uR}}{0.87 \cdot As}$$

$$ex 247.5248MPa = \frac{4.35kN}{0.87 \cdot 20.2mm^2}$$
7) Ultimate Tensile Force in Absence of Non-Prestressed Reinforcement   

$$fx P_{uR} = 0.87 \cdot F_{pkf} \cdot As$$

$$ex 4.375926kN = 0.87 \cdot 249MPa \cdot 20.2mm^2$$

fx 
$$\mathrm{P_{uR}} = 0.87 \cdot \mathrm{F_{pkf}} \cdot \mathrm{As} + (0.87 \cdot \mathrm{f_y} \cdot \mathrm{A_s})$$

ex 113.1259kN =  $0.87 \cdot 249$ MPa  $\cdot 20.2$ mm<sup>2</sup> +  $(0.87 \cdot 250$ MPa  $\cdot 500$ mm<sup>2</sup>)

# At Service Load 🗹



fx 
$$\varepsilon_{ce} = \varepsilon_{pe} - \Delta \varepsilon_{p}$$
  
ex  $0.03 = 0.05 - 0.02$ 



Open Calculator

# 10) Strain in Tendons due to Effective Prestress C $\epsilon_{pe} = \Delta \epsilon_p + \epsilon_{ce}$ Open Calculator C

ex 0.05 = 0.02 + 0.03

# 11) Stress in Concrete Member with Non-Prestressing Steel at Service Load Having Compressive Axial Load

$$f_{x} f_{concrete} = \left( \frac{P_{e}}{A_{T} + \left( \frac{E_{s}}{E_{concrete}} \right) \cdot A_{s}} \right) + \left( \frac{P}{A_{t}} \right)$$

$$ex 2.222172 MPa = \left( \frac{20 kN}{1000 mm^{2} + \left( \frac{210000 MPa}{100 MPa} \right) \cdot 500 mm^{2}} \right) + \left( \frac{10N}{4500.14 mm^{2}} \right)$$

# At Transfer 🖨

#### 12) Area of Concrete for Known Stress in Concrete without Non-Prestressed Reinforcement 🕑

fx 
$$A_{T} = \left(\frac{P_{o}}{f_{concrete}}\right)$$
  
ex  $6024.096 \text{mm}^{2} = \left(\frac{100 \text{kN}}{16.6 \text{MPa}}\right)$ 

#### 13) Area of Non-Prestressed Reinforcement given Stress in Concrete 💪



Open Calculator

14) Stress in Concrete in Member without Non-Prestressed Reinforcement 🖸

fx 
$$f_{concrete} = \left(rac{P_o}{A_T}
ight)$$
  
ex  $100 MPa = \left(rac{100 kN}{1000 mm^2}
ight)$ 

# Geometrics Properties 🕑

15) Area of Concrete about Non-Prestressed Reinforcements and Transformed Section 🚰

16) Area of Non-Prestressed Reinforcement in Partially Prestressed Members 💪

$$\mathbf{f}_{\mathbf{x}} \left[ \mathrm{A}_{\mathrm{s}} = \left( \mathrm{A}_{\mathrm{t}} - \mathrm{A}_{\mathrm{T}} - \left( rac{\mathrm{E}_{\mathrm{P}}}{\mathrm{E}_{\mathrm{c}}} 
ight) \cdot \mathrm{As} 
ight) \cdot \left( rac{\mathrm{E}_{\mathrm{c}}}{\mathrm{E}_{\mathrm{s}}} 
ight) 
ight]$$

$$499.9998 \text{mm}^2 = \left(4500.14 \text{mm}^2 - 1000 \text{mm}^2 - \left(\frac{210 \text{MPa}}{30000 \text{MPa}}\right) \cdot 20.2 \text{mm}^2\right) \cdot \left(\frac{30000 \text{MPa}}{210000 \text{MPa}}\right)$$

17) Area of Prestressing Tendons about Non-Prestressed Reinforcements and Transformed Section



ex

Open Calculator

Open Calculator 🕝

18) Transformed Area of Partially Prestressed Members 🚰



# Variables Used

- As Area of Reinforcement (Square Millimeter)
- At Transformed Area of Prestressed Member (Square Millimeter)
- AT Transformed Area of Concrete (Square Millimeter)
- As Area of Prestressing Steel (Square Millimeter)
- Ec Modulus of Elasticity of Concrete (Megapascal)
- Econcrete Modulus of Elasticity Concrete (Megapascal)
- Ep Modulus of Elasticity of Prestressing Steel (Megapascal)
- Es Modulus of Elasticity of Steel (Megapascal)
- fconcrete Stress in Concrete Section (Megapascal)
- F<sub>pkf</sub> Tensile Strength of Prestressed Steel (Megapascal)
- fv Yield Strength of Steel (Megapascal)
- P Axial Force (Newton)
- Pe Effective Prestress (Kilonewton)
- Po Prestress at Transfer (Kilonewton)
- **P**<sub>UR</sub> Tensile Force (Kilonewton)
- Δε<sub>p</sub> Strain Difference
- ε<sub>c</sub> Strain in Concrete
- ε<sub>ce</sub> Concrete Strain
- ε<sub>p</sub> Strain in Prestress Steel
- ε<sub>pe</sub> Strain in Tendon



# **Constants, Functions, Measurements used**

- Measurement: Area in Square Millimeter (mm<sup>2</sup>) Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa) Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N) Force Unit Conversion
- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion



| Check other formula lists                                                                                                                                       |                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Analysis of Prestressing and Bending<br/>Stresses Formulas </li> <li>Crack Width and Deflection of Prestress<br/>Concrete Members Formulas </li> </ul> | <ul> <li>General Principles of Prestressed Concrete<br/>Formulas </li> <li>Transmission of Prestress Formulas </li> </ul> |
| Feel free to SHARE this document with your friends!                                                                                                             |                                                                                                                           |

# **PDF Available in**

English Spanish French German Russian Italian Portuguese Polish Dutch

10/23/2023 | 5:22:32 AM UTC

Please leave your feedback here...

