Analysis of Prestressing and Bending Stresses Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Analysis of Prestressing and Bending Stresses Formulas

Analysis of Prestressing and Bending Stresses ©

Analysis of Behaviour ©

1) Strain Difference in Prestressed Tendons given Strain in Concrete at level of Steel
fx $\Delta \varepsilon_{\mathrm{p}}=\left(\varepsilon_{\mathrm{p}}-\varepsilon_{\mathrm{c}}\right)$
ex $0.02=(1.71-1.69)$
$f \mathrm{fx} \Delta \varepsilon_{\mathrm{p}}=\varepsilon_{\mathrm{pe}}-\varepsilon_{\mathrm{ce}}$
ex $0.02=0.05-0.03$
2) Strain in Concrete at Level of Steel
$f \mathbf{x} \varepsilon_{\mathrm{c}}=\varepsilon_{\mathrm{p}}-\Delta \varepsilon_{\mathrm{p}}$
ex $1.69=1.71-0.02$
3) Strain in Prestressed Tendons
$f \mathbf{x} \varepsilon_{\mathrm{p}}=\varepsilon_{\mathrm{c}}+\Delta \varepsilon_{\mathrm{p}}$
ex $1.71=1.69+0.02$

Analysis of Ultimate Strength

5) Area of Prestressing Tendon for Known Tensile Strength of Section
$f \mathrm{As}=\frac{\mathrm{P}_{\mathrm{uR}}}{0.87 \cdot \mathrm{~F}_{\mathrm{pkf}}}$
ex $20.08032 \mathrm{~mm}^{2}=\frac{4.35 \mathrm{kN}}{0.87 \cdot 249 \mathrm{MPa}}$
6) Characteristic Tensile Strength of Prestressing Tendons for Known Tensile Strength of Section
$f \times \mathrm{F}_{\mathrm{pkf}}=\frac{\mathrm{P}_{\mathrm{uR}}}{0.87 \cdot \mathrm{As}}$
Open Calculator
ex $247.5248 \mathrm{MPa}=\frac{4.35 \mathrm{kN}}{0.87 \cdot 20.2 \mathrm{~mm}^{2}}$
7) Ultimate Tensile Force in Absence of Non-Prestressed Reinforcement
fx $\mathrm{P}_{\mathrm{uR}}=0.87 \cdot \mathrm{~F}_{\mathrm{pkf}} \cdot \mathrm{As}$
ex $4.375926 \mathrm{kN}=0.87 \cdot 249 \mathrm{MPa} \cdot 20.2 \mathrm{~mm}^{2}$
8) Ultimate Tensile Strength of Section in Presence of Non-Prestressing Reinforcement
$f x \mathrm{P}_{\mathrm{uR}}=0.87 \cdot \mathrm{~F}_{\mathrm{pkf}} \cdot \mathrm{As}+\left(0.87 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{A}_{\mathrm{s}}\right)$
ex $113.1259 \mathrm{kN}=0.87 \cdot 249 \mathrm{MPa} \cdot 20.2 \mathrm{~mm}^{2}+\left(0.87 \cdot 250 \mathrm{MPa} \cdot 500 \mathrm{~mm}^{2}\right)$

At Service Load

9) Strain in Concrete due to Effective Prestress
$\mathrm{fx} \varepsilon_{\mathrm{ce}}=\varepsilon_{\mathrm{pe}}-\Delta \varepsilon_{\mathrm{p}}$
ex $0.03=0.05-0.02$
10) Strain in Tendons due to Effective Prestress
$f \mathrm{fx} \varepsilon_{\mathrm{pe}}=\Delta \varepsilon_{\mathrm{p}}+\varepsilon_{\mathrm{ce}}$
ex $0.05=0.02+0.03$
11) Stress in Concrete Member with Non-Prestressing Steel at Service Load Having Compressive Axial Load
$f \times f_{\text {concrete }}=\left(\frac{P_{e}}{A_{T}+\left(\frac{E_{s}}{E_{\text {concrete }}}\right) \cdot A_{s}}\right)+\left(\frac{P}{A_{t}}\right)$
ex $2.222172 \mathrm{MPa}=\left(\frac{20 \mathrm{kN}}{1000 \mathrm{~mm}^{2}+\left(\frac{210000 \mathrm{MPa}}{100 \mathrm{MPa}}\right) \cdot 500 \mathrm{~mm}^{2}}\right)+\left(\frac{10 \mathrm{~N}}{4500.14 \mathrm{~mm}^{2}}\right)$

At Transfer ©

12) Area of Concrete for Known Stress in Concrete without Non-Prestressed Reinforcement
$f x \mathrm{~A}_{\mathrm{T}}=\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{f}_{\text {concrete }}}\right)$
ex $6024.096 \mathrm{~mm}^{2}=\left(\frac{100 \mathrm{kN}}{16.6 \mathrm{MPa}}\right)$
13) Area of Non-Prestressed Reinforcement given Stress in Concrete
$f \mathbf{f x} \mathrm{~A}_{\mathrm{s}}=\left(\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{f}_{\text {concrete }}}\right)+\mathrm{A}_{\mathrm{T}}\right) \cdot\left(\frac{\mathrm{E}_{\text {concrete }}}{\mathrm{E}_{\mathrm{s}}}\right)$
Open Calculator
ex $0.476193 \mathrm{~mm}^{2}=\left(\left(\frac{100 \mathrm{kN}}{16.6 \mathrm{MPa}}\right)+1000 \mathrm{~mm}^{2}\right) \cdot\left(\frac{100 \mathrm{MPa}}{210000 \mathrm{MPa}}\right)$
14) Stress in Concrete in Member without Non-Prestressed Reinforcement
$f \mathrm{f} \mathrm{f}_{\text {concrete }}=\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{A}_{\mathrm{T}}}\right)$
Open Calculator
ex $100 \mathrm{MPa}=\left(\frac{100 \mathrm{kN}}{1000 \mathrm{~mm}^{2}}\right)$

Geometrics Properties

15) Area of Concrete about Non-Prestressed Reinforcements and Transformed Section
$f x A_{T}=A_{t}-\left(\frac{E_{s}}{E_{c}}\right) \cdot A_{s}-\left(\frac{E_{P}}{E_{c}}\right) \cdot A s$
Open Calculator
ex $999.9986 \mathrm{~mm}^{2}=4500.14 \mathrm{~mm}^{2}-\left(\frac{210000 \mathrm{MPa}}{30000 \mathrm{MPa}}\right) \cdot 500 \mathrm{~mm}^{2}-\left(\frac{210 \mathrm{MPa}}{30000 \mathrm{MPa}}\right) \cdot 20.2 \mathrm{~mm}^{2}$
16) Area of Non-Prestressed Reinforcement in Partially Prestressed Members
$f \times A_{s}=\left(A_{t}-A_{T}-\left(\frac{E_{P}}{E_{c}}\right) \cdot A s\right) \cdot\left(\frac{E_{c}}{E_{s}}\right)$
Open Calculator
ex
$499.9998 \mathrm{~mm}^{2}=\left(4500.14 \mathrm{~mm}^{2}-1000 \mathrm{~mm}^{2}-\left(\frac{210 \mathrm{MPa}}{30000 \mathrm{MPa}}\right) \cdot 20.2 \mathrm{~mm}^{2}\right) \cdot\left(\frac{30000 \mathrm{MPa}}{210000 \mathrm{MPa}}\right)$
17) Area of Prestressing Tendons about Non-Prestressed Reinforcements and Transformed Section [
$f x \mathrm{As}=\left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\mathrm{T}}-\left(\frac{\mathrm{E}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{c}}}\right) \cdot \mathrm{A}_{\mathrm{s}}\right) \cdot\left(\frac{\mathrm{E}_{\mathrm{c}}}{\mathrm{E}_{\mathrm{P}}}\right)$
Open Calculator
ex $20 \mathrm{~mm}^{2}=\left(4500.14 \mathrm{~mm}^{2}-1000 \mathrm{~mm}^{2}-\left(\frac{210000 \mathrm{MPa}}{30000 \mathrm{MPa}}\right) \cdot 500 \mathrm{~mm}^{2}\right) \cdot\left(\frac{30000 \mathrm{MPa}}{210 \mathrm{MPa}}\right)$
18) Transformed Area of Partially Prestressed Members
$f \mathbf{x} A_{t}=A_{T}+\left(\frac{E_{s}}{E_{c}}\right) \cdot A_{s}+\left(\frac{E_{P}}{E_{c}}\right) \cdot A s$
Open Calculator
ex $4500.141 \mathrm{~mm}^{2}=1000 \mathrm{~mm}^{2}+\left(\frac{210000 \mathrm{MPa}}{30000 \mathrm{MPa}}\right) \cdot 500 \mathrm{~mm}^{2}+\left(\frac{210 \mathrm{MPa}}{30000 \mathrm{MPa}}\right) \cdot 20.2 \mathrm{~mm}^{2}$

Variables Used

- $\mathbf{A}_{\mathbf{s}}$ Area of Reinforcement (Square Millimeter)
- $\mathbf{A}_{\mathbf{t}}$ Transformed Area of Prestressed Member (Square Millimeter)
- $\mathbf{A}_{\mathbf{T}}$ Transformed Area of Concrete (Square Millimeter)
- As Area of Prestressing Steel (Square Millimeter)
- $\mathbf{E}_{\mathbf{c}}$ Modulus of Elasticity of Concrete (Megapascal)
- $E_{\text {concrete }}$ Modulus of Elasticity Concrete (Megapascal)
- $\mathbf{E}_{\mathbf{P}}$ Modulus of Elasticity of Prestressing Steel (Megapascal)
- $\mathbf{E}_{\mathbf{s}}$ Modulus of Elasticity of Steel (Megapascal)
- $\mathbf{f}_{\text {concrete }}$ Stress in Concrete Section (Megapascal)
- $\mathbf{F}_{\mathbf{p k f}}$ Tensile Strength of Prestressed Steel (Megapascal)
- $\mathbf{f}_{\mathbf{y}}$ Yield Strength of Steel (Megapascal)
- P Axial Force (Newton)
- \mathbf{P}_{e} Effective Prestress (Kilonewton)
- $\mathbf{P}_{\mathbf{o}}$ Prestress at Transfer (Kilonewton)
- $\mathbf{P}_{\mathbf{u R}}$ Tensile Force (Kilonewton)
- $\Delta \varepsilon_{p}$ Strain Difference
- $\varepsilon_{\mathbf{c}}$ Strain in Concrete
- $\varepsilon_{\text {ce }}$ Concrete Strain
- ε_{p} Strain in Prestress Steel
- $\varepsilon_{\mathrm{pe}}$ Strain in Tendon

Constants, Functions, Measurements used

- Measurement: Area in Square Millimeter (mm^{2})

Area Unit Conversion

- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN), Newton (N)

Force Unit Conversion

U

- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion 〔

Check other formula lists

- Analysis of Prestressing and Bending Stresses Formulas
- Crack Width and Deflection of Prestress Concrete Members Formulas \longleftarrow
- General Principles of Prestressed Concrete Formulas
- Transmission of Prestress Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

