

Crack Width and Deflection of Prestress Concrete Members Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 40 Crack Width and Deflection of Prestress Concrete Members Formulas

Crack Width and Deflection of Prestress Concrete Members &

Calculation of Crack Width

1) Average Strain at Selected Level given Crack Width

$$\epsilon_{
m m} = rac{{
m W_{cr}} \cdot \left(1 + \left(2 \cdot rac{{
m acr} - {
m C_{min}}}{{
m h} - {
m x}}
ight)
ight)}}{3 \cdot {
m acr}}$$

2) Center to Center Spacing given Shortest Distance

$$\mathbf{f} \mathbf{s} = 2 \cdot \sqrt{\left(\mathrm{acr} + \left(rac{\mathrm{D}}{2}
ight)
ight)^2 - \left(\mathrm{d}^{2}
ight)^2}$$

$$\boxed{ 54.10324 \text{cm} = 2 \cdot \sqrt{\left(2.51 \text{cm} + \left(\frac{0.5 \text{m}}{2}\right)\right)^2 - \left((50.01 \text{mm})^2\right) } }$$

3) Crack Width on Surface of Section

$$W_{
m cr} = rac{3 \cdot {
m acr} \cdot arepsilon_{
m m}}{1 + \left(2 \cdot rac{{
m acr} - {
m C}_{
m min}}{{
m h} - {
m x}}
ight)}$$

$$= \frac{3 \cdot 2.51 \text{cm} \cdot 0.0005}{1 + \left(2 \cdot \frac{2.51 \text{cm} - 9.48 \text{cm}}{20.1 \text{cm} - 50 \text{mm}}\right)}$$

Open Calculator

Open Calculator 🚰

Open Calculator

4) Depth of Neutral Axis given Crack Width

$$\mathbf{x} = \mathbf{h} - \left(2 \cdot \frac{\mathrm{acr} - \mathrm{C}_{\min}}{3 \cdot \mathrm{acr} \cdot \epsilon} - 1\right)$$

Open Calculator

5) Diameter of Longitudinal Bar given Shortest Distance

$$D = \left(\sqrt{\left(rac{z}{2}
ight)^2 + d'^2 - acr}\right) \cdot 2$$

Open Calculator

$$\boxed{ 0.04982 \text{m} = \left(\sqrt{\left(\frac{40 \text{A}}{2} \right)^2 + (50.01 \text{mm})^2 - 2.51 \text{cm}} \right) \cdot 2 }$$

6) Effective Cover given Shortest Distance

$$\mathrm{d}' = \sqrt{\left(\mathrm{acr} + \left(rac{\mathrm{D}}{2}
ight)
ight)^2 - \left(rac{\mathrm{z}}{2}
ight)^2}$$

Open Calculator

$$\boxed{\textbf{ex}} \ 275.1 \text{mm} = \sqrt{\left(2.51 \text{cm} + \left(\frac{0.5 \text{m}}{2}\right)\right)^2 - \left(\frac{40 \text{A}}{2}\right)^2}$$

7) Minimum Clear Cover given Crack Width

$$ag{K} C_{\min} = rc - rac{\left(\left(rac{3 \cdot rc \cdot arepsilon_{
m m}}{W_{
m cr}}
ight) - 1
ight) \cdot (h - x)}{2}$$

Evaluation of Average Strain and Neutral Axis Depth

8) Area of Prestressing Steel given Tension Force

$$ag{As} = rac{ ext{N}_{ ext{u}}}{ ext{E}_{ ext{p}} \cdot \epsilon}$$

ex
$$26.31316 \mathrm{mm^2} = \frac{1000 \mathrm{N}}{38 \mathrm{kg/cm^3 \cdot 1.0001}}$$

9) Average Strain under Tension

$$\epsilon_{
m m} = \epsilon_1 - rac{W_{
m cr} \cdot (h-x) \cdot (D_{
m CC} - x)}{3 \cdot E_{
m s} \cdot A_{
m s} \cdot (L_{
m eff} - x)}$$

$$\boxed{ \textbf{ex} \ 0.000514 = 0.000514 - \frac{0.49 \text{mm} \cdot (12.01 \text{m} - 50 \text{mm}) \cdot (4.5 \text{m} - 50 \text{mm})}{3 \cdot 200000 \text{MPa} \cdot 500 \text{mm}^2 \cdot (50.25 \text{m} - 50 \text{mm})} }$$

10) Compression Force for Prestressed Section

$$ag{C_{
m c} = {
m As} \cdot {
m E_p} \cdot \epsilon}$$

11) Couple Force of Cross Section

fx
$$m C = 0.5 \cdot E_c \cdot \epsilon_c \cdot x \cdot W_{cr}$$

ex
$$0.00325 \mathrm{kN} = 0.5 \cdot 0.157 \mathrm{MPa} \cdot 1.69 \cdot 50 \mathrm{mm} \cdot 0.49 \mathrm{mm}$$

12) Depth of Neutral Axis given Couple Force of Cross Section

fx
$$\mathbf{x} = rac{\mathbf{C}}{0.5 \cdot \mathbf{E_c} \cdot \mathbf{e_c} \cdot \mathbf{W_{cr}}}$$

13) Height of Crack Width at Soffit given Average Strain

 $\mathbf{h} = \left(rac{\left(\epsilon_1 - \epsilon_{\mathrm{m}}
ight)\cdot\left(3\cdot E_{\mathrm{s}}\cdot A_{\mathrm{s}}\cdot\left(\mathrm{d} - \mathrm{x}
ight)
ight)}{W_{\mathrm{CP}}\cdot\left(D_{\mathrm{CC}} - \mathrm{x}
ight)}
ight) + \mathrm{x}$

Open Calculator

ex

$$67415.78 \text{m} = \left(\frac{(0.000514 - 0.0005) \cdot (3 \cdot 200000 \text{MPa} \cdot 500 \text{mm}^2 \cdot (85 \text{mm} - 50 \text{mm}))}{0.49 \text{mm} \cdot (4.5 \text{m} - 50 \text{mm})}\right) + 50 \text{mm}$$

14) Modulus of Elasticity of Concrete given Couple Force of Cross-Section

fx $E_{
m c} = rac{C}{0.5 \cdot \epsilon_{
m c} \cdot {
m x} \cdot W_{
m cr}}$

Open Calculator

ex $1.352494 \mathrm{MPa} = \frac{0.028 \mathrm{kN}}{0.5 \cdot 1.69 \cdot 50 \mathrm{mm} \cdot 0.49 \mathrm{mm}}$

15) Modulus of Elasticity of Prestressed Steel given Compression Force

 $\mathbf{E}_{\mathrm{p}} = rac{C_{\mathrm{c}}}{As \cdot \epsilon}$

Open Calculator 🚰

 $m ex \left[37.125 kg/cm^3 = rac{750 N}{20.2 mm^2 \cdot 1.0001}
ight]$

16) Strain at Selected Level given Average Strain under Tension 🖸

 $\epsilon_{
m M} = \epsilon_{
m m} + rac{{
m W_{cr} \cdot (h-x) \cdot (D_{CC}-x)}}{3 \cdot {
m E_s \cdot A_s \cdot (L_{eff}-x)}}$

Open Calculator 🗗

 $\boxed{ \textbf{ex} \ 0.0005 = 0.0005 + \frac{0.49 \text{mm} \cdot (12.01 \text{m} - 50 \text{mm}) \cdot (4.5 \text{m} - 50 \text{mm})}{3 \cdot 200000 \text{MPa} \cdot 500 \text{mm}^2 \cdot (50.25 \text{m} - 50 \text{mm})} }$

17) Strain given Couple Force of Cross Section

 $\epsilon_{c} = \frac{C}{0.5 \cdot E_{c} \cdot x \cdot W_{cr}}$

Open Calculator

ex $14.55869 = \frac{0.028 \text{kN}}{0.5 \cdot 0.157 \text{MPa} \cdot 50 \text{mm} \cdot 0.49 \text{mm}}$

18) Strain in Longitudinal Reinforcement given Tension Force

fx $\epsilon ext{S} = rac{ ext{N}_{ ext{u}}}{ ext{A}_{ ext{s}} \cdot ext{Es}}$

Open Calculator

19) Strain in Prestressed Steel given Tension Force

fx $\epsilon = \frac{N_u}{As \cdot E_p}$

Open Calculator 🗗

$$=$$
 $1.302762 = rac{1000 ext{N}}{20.2 ext{mm}^2 \cdot 38 ext{kg/cm}^3}$

20) Width of Section given Couple Force of Cross Section

fx $W_{cr} = rac{C}{0.5 \cdot E_c \cdot \epsilon \cdot x}$

Open Calculator

ex 7.133045mm = $\frac{0.028$ kN $\frac{0.5 \cdot 0.157$ MPa $\cdot 1.0001 \cdot 50$ mm

Deflection 🗗

21) Deflection due to Self Weight given Short Term Deflection at Transfer

fx $\Delta \mathrm{sw} = \Delta \mathrm{po} + \Delta \mathrm{st}$

Open Calculator 🗗

$$= 2.5 \text{cm} + 2.50 \text{cm}$$

22) Short Term Deflection at Transfer

fx $\Delta \mathrm{st} = -\Delta \mathrm{po} + \Delta \mathrm{sw}$

Open Calculator

$$2.6 \text{cm} = -2.5 \text{cm} + 5.1 \text{cm}$$

Deflection due to Prestressing Force

23) Deflection due to Prestressing for Parabolic Tendon

$$\delta = \left(rac{5}{384}
ight) \cdot \left(rac{\mathrm{W_{up} \cdot L^4}}{\mathrm{E \cdot I_A}}
ight)$$

Open Calculator 🗗

24) Deflection due to Prestressing for Singly Harped Tendon

Open Calculator

ex
$$48.08642$$
m = $\frac{311.6$ N· $(5$ m $)^3}{48·15$ Pa· 1.125 kg·m 2

25) Deflection due to Prestressing Force before Losses when Short Term Deflection at Transfer 🖸

$$\Delta ext{fx} \Delta ext{po} = \Delta ext{sw} - \Delta ext{st}$$

Open Calculator

$$2.6 cm = 5.1 cm - 2.50 cm$$

26) Deflection due to Prestressing given Doubly Harped Tendon

$$\delta = rac{\mathrm{a}\cdot\left(\mathrm{a}^2
ight)\cdot\mathrm{Ft}\cdot\mathrm{L}^3}{24\cdot\mathrm{E}\cdot\mathrm{I}_\mathrm{p}}$$

$$= 249.24049 m = \frac{0.8 \cdot \left((0.8)^2 \right) \cdot 311.6 N \cdot (5m)^3}{24 \cdot 15 Pa \cdot 1.125 kg \cdot m^2}$$

27) Flexural Rigidity given Deflection due to Prestressing for Doubly Harped Tendon

Open Calculator 2

Open Calculator 🚰

Open Calculator

Open Calculator 🚰

$$ag{EI} = rac{\mathrm{a} \cdot \left(\mathrm{a}^2
ight) \cdot \mathrm{Ft} \cdot \mathrm{L}^3}{24 \cdot \delta}$$

$$\boxed{ 17.27512 \text{N*m}^2 = \frac{0.8 \cdot \left((0.8)^2 \right) \cdot 311.6 \text{N} \cdot (5\text{m})^3}{24 \cdot 48.1 \text{m}} }$$

28) Flexural Rigidity given Deflection due to Prestressing for Parabolic Tendon

ex
$$0.014246 \text{N*m}^2 = \left(\frac{5}{384}\right) \cdot \left(\frac{0.842 \text{kN/m} \cdot (5\text{m})^4}{48.1\text{m}}\right)$$

29) Flexural Rigidity given Deflection due to Prestressing for Singly Harped Tendon

ex
$$16.87024 \mathrm{N^*m^2} = \frac{311.6 \mathrm{N} \cdot (5 \mathrm{m})^3}{48 \cdot 48.1 \mathrm{m}}$$

30) Length of Span given Deflection due to Prestressing for Doubly Harped Tendon

$$\mathbf{L} = \left(rac{\delta \cdot 48 \cdot \mathrm{E} \cdot \mathrm{I_p}}{\mathrm{a} \cdot (4 - 3 \cdot \mathrm{a}^2) \cdot \mathrm{Ft}}
ight)^{rac{1}{3}}$$

31) Length of Span given Deflection due to Prestressing for Singly Harped Tendon 🗗

 $L = \left(rac{\delta \cdot 48 \cdot E \cdot I_p}{Ft}
ight)^{rac{1}{3}}$

Open Calculator

$$= \left(\frac{48.1 \text{m} \cdot 48 \cdot 15 \text{Pa} \cdot 1.125 \text{kg} \cdot \text{m}^2}{311.6 \text{N}}\right)^{\frac{1}{3}}$$

32) Moment of Inertia for Deflection due to Prestressing for Parabolic Tendon

$$\mathbf{K} \mathbf{I}_{\mathrm{p}} = \left(rac{5}{384}
ight) \cdot \left(rac{\mathbf{W}_{\mathrm{up}} \cdot \mathbf{L}^4}{\mathrm{e}}
ight)$$

Open Calculator

$$\boxed{ 137.0443 \text{kg} \cdot \text{m}^2 = \left(\frac{5}{384}\right) \cdot \left(\frac{0.842 \text{kN/m} \cdot \left(5\text{m}\right)^4}{50 \text{Pa}}\right) }$$

33) Moment of Inertia for Deflection due to Prestressing in Doubly Harped Tendon 🗲

$$\mathbf{f}_{\mathbf{k}} egin{aligned} I_{\mathrm{p}} &= rac{\mathrm{a} \cdot \left(\mathrm{a}^{2}
ight) \cdot \mathrm{Ft} \cdot \mathrm{L}^{3}}{48 \cdot \mathrm{e} \cdot \delta} \end{aligned}$$

Open Calculator 🗗

34) Moment of Inertia for Deflection due to Prestressing of Singly Harped Tendon

$$I_{
m p}=rac{{
m Ft}\cdot {
m L}^3}{48\cdot {
m e}\cdot \delta}$$

Open Calculator

$$\mathbf{ex} \ 0.337405 \text{kg} \cdot \text{m}^2 = \frac{311.6 \text{N} \cdot (5 \text{m})^3}{48 \cdot 50 \text{Pa} \cdot 48.1 \text{m}}$$

35) Uplift Thrust given Deflection due to Prestressing for Doubly Harped Tendon

 $extbf{Ft} = rac{\delta \cdot 24 \cdot \mathrm{E} \cdot \mathrm{I_p}}{\mathrm{a} \cdot (3 - 4 \cdot \mathrm{a}^2) \cdot \mathrm{L}^3}$

Open Calculator

36) Uplift Thrust given Deflection due to Prestressing for Singly Harped Tendon

 $\text{Ft} = \frac{\delta \cdot 48 \cdot E \cdot I_p}{L^3}$

Open Calculator

$$= \frac{48.1 \text{m} \cdot 48 \cdot 15 \text{Pa} \cdot 1.125 \text{kg} \cdot \text{m}^2}{(5 \text{m})^3}$$

37) Uplift Thrust when Deflection due to Prestressing for Parabolic Tendon

 $W_{up} = rac{\delta \cdot 384 \cdot E \cdot I_A}{5 \cdot L^4}$

Open Calculator

$$= \frac{48.1 \text{m} \cdot 384 \cdot 15 \text{Pa} \cdot 9.5 \text{m}^4}{5 \cdot (5 \text{m})^4}$$

38) Young's Modulus given Deflection due to Prestressing for Doubly Harped Tendon

 $\mathbf{E} = rac{\mathbf{a} \cdot \left(3 - 4 \cdot \mathbf{a}^2
ight) \cdot \mathrm{Ft} \cdot \mathrm{L}^3}{48 \cdot \delta \cdot \mathrm{I_p}}$

Open Calculator 🗗

$$= \frac{0.8 \cdot \left(3 - 4 \cdot (0.8)^2\right) \cdot 311.6 \text{N} \cdot (5\text{m})^3}{48 \cdot 48.1 \text{m} \cdot 1.125 \text{kg} \cdot \text{m}^2}$$

39) Young's Modulus given Deflection due to Prestressing for Parabolic Tendon

Open Calculator 2

Open Calculator G

$${f E} = \left(rac{5}{384}
ight) \cdot \left(rac{{
m W}_{
m up} \cdot {
m L}^4}{\delta \cdot {
m I}_{
m A}}
ight)$$

40) Young's Modulus given Deflection due to Prestressing for Singly Harped Tendon

$$\mathrm{E}=rac{\mathrm{Ft}\cdot\mathrm{L}^3}{48\cdot\delta\cdot\mathrm{I_p}}$$

ex 14.99576Pa = $\frac{311.6N \cdot (5m)^3}{48 \cdot 48.1m \cdot 1.125 \text{kg} \cdot \text{m}^2}$

Variables Used

- a Part of Span Length
- As Area of Reinforcement (Square Millimeter)
- acr Shortest Distance (Centimeter)
- As Area of Prestressing Steel (Square Millimeter)
- C Couple Force (Kilonewton)
- C_c Total Compression on Concrete (Newton)
- C_{min} Minimum Clear Cover (Centimeter)
- d Effective Depth of Reinforcement (Millimeter)
- d' Effective Cover (Millimeter)
- **D** Diameter of Longitudinal Bar (Meter)
- D_{CC} Distance from Compression to Crack Width (Meter)
- e Elastic Modulus (Pascal)
- E Young's Modulus (Pascal)
- Ec Modulus of Elasticity of Concrete (Megapascal)
- Ep Prestressed Young's Modulus (Kilogram per Cubic Centimeter)
- Es Modulus of Elasticity of Steel Reinforcement (Megapascal)
- El Flexural Rigidity (Newton Square Meter)
- Es Modulus of Elasticity of Steel
- Ft Thrust Force (Newton)
- **h** Total Depth (Centimeter)
- h Height of Crack (Meter)
- IA Second Moment of Area (Meter4)
- Ip Moment of Inertia in Prestress (Kilogram Square Meter)
- L Span Length (Meter)
- Leff Effective Length (Meter)
- N_{II} Tension Force (Newton)
- S Center to Center Spacing (Centimeter)
- Wcr Crack Width (Millimeter)
- W_{up} Upward Thrust (Kilonewton per Meter)
- X Depth of Neutral Axis (Millimeter)
- **z** Center-to-center Distance (Angstrom)

- δ Deflection due to Moments on Arch Dam (Meter)
- **Δpo** Deflection due to Prestressing Force (Centimeter)
- **Ast** Short Term Deflection (Centimeter)
- **Asw** Deflection due to Self Weight (Centimeter)
- E Strain
- ε₁ Strain at Selected Level
- ε_c Strain in Concrete
- ε_m Average Strain
- ES Strain in Longitudinal Reinforcement

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Millimeter (mm), Centimeter (cm), Meter (m), Angstrom (A)

 Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²)

 Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa), Pascal (Pa)

 Pressure Unit Conversion
- Measurement: Force in Newton (N), Kilonewton (kN)
 Force Unit Conversion
- Measurement: Surface Tension in Kilonewton per Meter (kN/m)

 Surface Tension Unit Conversion
- Measurement: Density in Kilogram per Cubic Centimeter (kg/cm³)
 Density Unit Conversion
- Measurement: Moment of Inertia in Kilogram Square Meter (kg·m²)

 Moment of Inertia Unit Conversion
- Measurement: Second Moment of Area in Meter⁴ (m⁴)
 Second Moment of Area Unit Conversion
- Measurement: Flexural Rigidity in Newton Square Meter (N*m²)

 Flexural Rigidity Unit Conversion

Check other formula lists

- Analysis of Prestressing and Bending Stresses Formulas
- Crack Width and Deflection of Prestress
 Concrete Members Formulas
- General Principles of Prestressed Concrete Formulas
- Transmission of Prestress Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/21/2023 | 1:41:50 PM UTC

Please leave your feedback here...

