Crack Width and Deflection of Prestress Concrete Members Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 40 Crack Width and Deflection of Prestress Concrete Members Formulas

Crack Width and Deflection of Prestress Concrete Members \mathbb{B}

Calculation of Crack Width

1) Average Strain at Selected Level given Crack Width
$\mathrm{fx} \varepsilon_{\mathrm{m}}=\frac{\mathrm{W}_{\mathrm{cr}} \cdot\left(1+\left(2 \cdot \frac{\mathrm{acr}-\mathrm{C}_{\text {min }}}{\mathrm{h}-\mathrm{x}}\right)\right)}{3 \cdot \mathrm{acr}}$
ex $0.0005=\frac{0.49 \mathrm{~mm} \cdot\left(1+\left(2 \cdot \frac{2.51 \mathrm{~cm}-9.48 \mathrm{~cm}}{20.1 \mathrm{~cm}-50 \mathrm{~mm}}\right)\right)}{3 \cdot 2.51 \mathrm{~cm}}$
2) Center to Center Spacing given Shortest Distance
$f \mathbf{x}=2 \cdot \sqrt{\left(\operatorname{acr}+\left(\frac{D}{2}\right)\right)^{2}-\left(d^{\prime 2}\right)}$
$\operatorname{ex} 54.10324 \mathrm{~cm}=2 \cdot \sqrt{\left(2.51 \mathrm{~cm}+\left(\frac{0.5 \mathrm{~m}}{2}\right)\right)^{2}-\left((50.01 \mathrm{~mm})^{2}\right)}$
3) Crack Width on Surface of Section
$\mathrm{fx} \mathrm{W}_{\text {cr }}=\frac{3 \cdot \mathrm{acr} \cdot \varepsilon_{\mathrm{m}}}{1+\left(2 \cdot \frac{\mathrm{acr}-\mathrm{C}_{\text {min }}}{\mathrm{h}-\mathrm{x}}\right)}$
ex $0.490099 \mathrm{~mm}=\frac{3 \cdot 2.51 \mathrm{~cm} \cdot 0.0005}{1+\left(2 \cdot \frac{2.51 \mathrm{~cm}-9.48 \mathrm{~cm}}{20.1 \mathrm{~cm}-50 \mathrm{~mm}}\right)}$
4) Depth of Neutral Axis given Crack Width
$\mathrm{fx} \mathrm{x}=\mathrm{h}-\left(2 \cdot \frac{\mathrm{acr}-\mathrm{C}_{\text {min }}}{3 \cdot \operatorname{acr} \cdot \varepsilon}-1\right)$
ex $3052.077 \mathrm{~mm}=20.1 \mathrm{~cm}-\left(2 \cdot \frac{2.51 \mathrm{~cm}-9.48 \mathrm{~cm}}{3 \cdot 2.51 \mathrm{~cm} \cdot 1.0001}-1\right)$
5) Diameter of Longitudinal Bar given Shortest Distance
$\mathrm{fx} D=\left(\sqrt{\left(\frac{\mathrm{z}}{2}\right)^{2}+\mathrm{d}^{\prime 2}}-\mathrm{acr}\right) \cdot 2$
$\operatorname{ex} 0.04982 \mathrm{~m}=\left(\sqrt{\left(\frac{40 \mathrm{~A}}{2}\right)^{2}+(50.01 \mathrm{~mm})^{2}}-2.51 \mathrm{~cm}\right) \cdot 2$
6) Effective Cover given Shortest Distance
$f \mathbf{x} d^{\prime}=\sqrt{\left(\operatorname{acr}+\left(\frac{D}{2}\right)\right)^{2}-\left(\frac{\mathrm{z}}{2}\right)^{2}}$
$e x 275.1 \mathrm{~mm}=\sqrt{\left(2.51 \mathrm{~cm}+\left(\frac{0.5 \mathrm{~m}}{2}\right)\right)^{2}-\left(\frac{40 \mathrm{~A}}{2}\right)^{2}}$
7) Minimum Clear Cover given Crack Width
$f \times \mathrm{C}_{\min }=\operatorname{acr}-\frac{\left(\left(\frac{3 \cdot \text { acr } \cdot \varepsilon_{\mathrm{m}}}{\mathrm{W}_{\mathrm{cr}}}\right)-1\right) \cdot(\mathrm{h}-\mathrm{x})}{2}$
ex $9.479883 \mathrm{~cm}=2.51 \mathrm{~cm}-\frac{\left(\left(\frac{3 \cdot 2.51 \mathrm{~cm} \cdot 0.0005}{0.49 \mathrm{~mm}}\right)-1\right) \cdot(20.1 \mathrm{~cm}-50 \mathrm{~mm})}{2}$

Evaluation of Average Strain and Neutral Axis Depth

8) Area of Prestressing Steel given Tension Force
$\mathrm{fx} \mathrm{As}=\frac{\mathrm{N}_{\mathrm{u}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon}$
ex $26.31316 \mathrm{~mm}^{2}=\frac{1000 \mathrm{~N}}{38 \mathrm{~kg} / \mathrm{cm}^{3} \cdot 1.0001}$
9) Average Strain under Tension
$\mathrm{fx} \varepsilon_{\mathrm{m}}=\varepsilon_{1}-\frac{\mathrm{W}_{\mathrm{cr}} \cdot(\mathrm{h}-\mathrm{x}) \cdot\left(\mathrm{D}_{\mathrm{CC}}-\mathrm{x}\right)}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{A}_{\mathrm{s}} \cdot\left(\mathrm{L}_{\mathrm{eff}}-\mathrm{x}\right)}$
ex $0.000514=0.000514-\frac{0.49 \mathrm{~mm} \cdot(12.01 \mathrm{~m}-50 \mathrm{~mm}) \cdot(4.5 \mathrm{~m}-50 \mathrm{~mm})}{3 \cdot 200000 \mathrm{MPa} \cdot 500 \mathrm{~mm}^{2} \cdot(50.25 \mathrm{~m}-50 \mathrm{~mm})}$
10) Compression Force for Prestressed Section
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{c}}=\mathrm{As} \cdot \mathrm{E}_{\mathrm{p}} \cdot \varepsilon$
ex $767.6768 \mathrm{~N}=20.2 \mathrm{~mm}^{2} \cdot 38 \mathrm{~kg} / \mathrm{cm}^{3} \cdot 1.0001$
11) Couple Force of Cross Section
$f \mathrm{f}=0.5 \cdot \mathrm{E}_{\mathrm{c}} \cdot \varepsilon_{\mathrm{c}} \cdot \mathrm{x} \cdot \mathrm{W}_{\mathrm{cr}}$
Open Calculator
ex $0.00325 \mathrm{kN}=0.5 \cdot 0.157 \mathrm{MPa} \cdot 1.69 \cdot 50 \mathrm{~mm} \cdot 0.49 \mathrm{~mm}$
12) Depth of Neutral Axis given Couple Force of Cross Section
$\mathrm{fx} \mathrm{x}=\frac{\mathrm{C}}{0.5 \cdot \mathrm{E}_{\mathrm{c}} \cdot \varepsilon_{\mathrm{c}} \cdot \mathrm{W}_{\mathrm{cr}}}$
ex $430.7305 \mathrm{~mm}=\frac{0.028 \mathrm{kN}}{0.5 \cdot 0.157 \mathrm{MPa} \cdot 1.69 \cdot 0.49 \mathrm{~mm}}$
13) Height of Crack Width at Soffit given Average Strain
$f \mathbf{x} h=\left(\frac{\left(\varepsilon_{1}-\varepsilon_{\mathrm{m}}\right) \cdot\left(3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{A}_{\mathrm{s}} \cdot(\mathrm{d}-\mathrm{x})\right)}{\mathrm{W}_{\mathrm{cr}} \cdot\left(\mathrm{D}_{\mathrm{CC}}-\mathrm{x}\right)}\right)+\mathrm{x}$
$67415.78 \mathrm{~m}=\left(\frac{(0.000514-0.0005) \cdot\left(3 \cdot 200000 \mathrm{MPa} \cdot 500 \mathrm{~mm}^{2} \cdot(85 \mathrm{~mm}-50 \mathrm{~mm})\right)}{0.49 \mathrm{~mm} \cdot(4.5 \mathrm{~m}-50 \mathrm{~mm})}\right)+50 \mathrm{~mm}$
14) Modulus of Elasticity of Concrete given Couple Force of Cross-Section
$f \mathrm{x} \mathrm{E}_{\mathrm{c}}=\frac{\mathrm{C}}{0.5 \cdot \varepsilon_{\mathrm{c}} \cdot \mathrm{x} \cdot \mathrm{W}_{\mathrm{cr}}}$
ex $1.352494 \mathrm{MPa}=\frac{0.028 \mathrm{kN}}{0.5 \cdot 1.69 \cdot 50 \mathrm{~mm} \cdot 0.49 \mathrm{~mm}}$
15) Modulus of Elasticity of Prestressed Steel given Compression Force
$f \times \mathrm{E}_{\mathrm{p}}=\frac{\mathrm{C}_{\mathrm{c}}}{\mathrm{As} \cdot \varepsilon}$
ex $37.125 \mathrm{~kg} / \mathrm{cm}^{3}=\frac{750 \mathrm{~N}}{20.2 \mathrm{~mm}^{2} \cdot 1.0001}$
16) Strain at Selected Level given Average Strain under Tension
$f \mathbf{x} \varepsilon_{1}=\varepsilon_{\mathrm{m}}+\frac{\mathrm{W}_{\mathrm{cr}} \cdot(\mathrm{h}-\mathrm{x}) \cdot\left(\mathrm{D}_{\mathrm{CC}}-\mathrm{x}\right)}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{A}_{\mathrm{s}} \cdot\left(\mathrm{L}_{\mathrm{eff}}-\mathrm{x}\right)}$
ex $0.0005=0.0005+\frac{0.49 \mathrm{~mm} \cdot(12.01 \mathrm{~m}-50 \mathrm{~mm}) \cdot(4.5 \mathrm{~m}-50 \mathrm{~mm})}{3 \cdot 200000 \mathrm{MPa} \cdot 500 \mathrm{~mm}^{2} \cdot(50.25 \mathrm{~m}-50 \mathrm{~mm})}$
17) Strain given Couple Force of Cross Section
$\mathrm{fx} \varepsilon_{\mathrm{c}}=\frac{\mathrm{C}}{0.5 \cdot \mathrm{E}_{\mathrm{c}} \cdot \mathrm{x} \cdot \mathrm{W}_{\mathrm{cr}}}$
Open Calculator ©
ex $14.55869=\frac{0.028 \mathrm{kN}}{0.5 \cdot 0.157 \mathrm{MPa} \cdot 50 \mathrm{~mm} \cdot 0.49 \mathrm{~mm}}$
18) Strain in Longitudinal Reinforcement given Tension Force
$f \mathrm{x} \varepsilon s=\frac{\mathrm{N}_{\mathrm{u}}}{\mathrm{A}_{\mathrm{s}} \cdot \mathrm{Es}}$
ex $10=\frac{1000 \mathrm{~N}}{500 \mathrm{~mm}^{2} \cdot 200000}$
19) Strain in Prestressed Steel given Tension Force ©
$\mathrm{fx} \varepsilon=\frac{\mathrm{N}_{\mathrm{u}}}{\mathrm{As} \cdot \mathrm{E}_{\mathrm{p}}}$
ex $1.302762=\frac{1000 \mathrm{~N}}{20.2 \mathrm{~mm}^{2} \cdot 38 \mathrm{~kg} / \mathrm{cm}^{3}}$
20) Width of Section given Couple Force of Cross Section
$f \mathrm{fx} \mathrm{W}_{\mathrm{cr}}=\frac{\mathrm{C}}{0.5 \cdot \mathrm{E}_{\mathrm{c}} \cdot \varepsilon \cdot \mathrm{x}}$
ex $7.133045 \mathrm{~mm}=\frac{0.028 \mathrm{kN}}{0.5 \cdot 0.157 \mathrm{MPa} \cdot 1.0001 \cdot 50 \mathrm{~mm}}$

Deflection

21) Deflection due to Self Weight given Short Term Deflection at Transfer
$\mathrm{fx} \Delta \mathrm{sw}=\Delta \mathrm{po}+\Delta \mathrm{st}$
ex $5 \mathrm{~cm}=2.5 \mathrm{~cm}+2.50 \mathrm{~cm}$
22) Short Term Deflection at Transfer
fx $\Delta \mathrm{st}=-\Delta \mathrm{po}+\Delta \mathrm{sw}$
$\mathrm{ex} 2.6 \mathrm{~cm}=-2.5 \mathrm{~cm}+5.1 \mathrm{~cm}$

Deflection due to Prestressing Force

23) Deflection due to Prestressing for Parabolic Tendon
$\mathrm{fx} \delta=\left(\frac{5}{384}\right) \cdot\left(\frac{\mathrm{W}_{\mathrm{up}} \cdot \mathrm{L}^{4}}{\mathrm{E} \cdot \mathrm{I}_{\mathrm{A}}}\right)$
ex $48.08571 \mathrm{~m}=\left(\frac{5}{384}\right) \cdot\left(\frac{0.842 \mathrm{kN} / \mathrm{m} \cdot(5 \mathrm{~m})^{4}}{15 \mathrm{~Pa} \cdot 9.5 \mathrm{~m}^{4}}\right)$
24) Deflection due to Prestressing for Singly Harped Tendon
$f \mathrm{fx}=\frac{\mathrm{Ft} \cdot \mathrm{L}^{3}}{48 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{p}}}$
ex $48.08642 \mathrm{~m}=\frac{311.6 \mathrm{~N} \cdot(5 \mathrm{~m})^{3}}{48 \cdot 15 \mathrm{~Pa} \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}$
25) Deflection due to Prestressing Force before Losses when Short Term Deflection at Transfer
$\mathrm{fx} \Delta \mathrm{po}=\Delta \mathrm{sw}-\Delta \mathrm{st}$
ex $2.6 \mathrm{~cm}=5.1 \mathrm{~cm}-2.50 \mathrm{~cm}$
26) Deflection due to Prestressing given Doubly Harped Tendon
$\mathrm{fx} \delta=\frac{\mathrm{a} \cdot\left(\mathrm{a}^{2}\right) \cdot \mathrm{Ft} \cdot \mathrm{L}^{3}}{24 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{p}}}$
$\mathbf{e x} 49.24049 \mathrm{~m}=\frac{0.8 \cdot\left((0.8)^{2}\right) \cdot 311.6 \mathrm{~N} \cdot(5 \mathrm{~m})^{3}}{24 \cdot 15 \mathrm{~Pa} \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}$
27) Flexural Rigidity given Deflection due to Prestressing for Doubly Harped Tendon
$f \mathrm{fx}=\frac{\mathrm{a} \cdot\left(\mathrm{a}^{2}\right) \cdot \mathrm{Ft} \cdot \mathrm{L}^{3}}{24 \cdot \delta}$
Open Calculator
ex $17.27512 \mathrm{~N}^{*} \mathrm{~m}^{2}=\frac{0.8 \cdot\left((0.8)^{2}\right) \cdot 311.6 \mathrm{~N} \cdot(5 \mathrm{~m})^{3}}{24 \cdot 48.1 \mathrm{~m}}$
28) Flexural Rigidity given Deflection due to Prestressing for Parabolic Tendon
$f \times \mathrm{EI}=\left(\frac{5}{384}\right) \cdot\left(\frac{\mathrm{W}_{\mathrm{up}} \cdot \mathrm{L}^{4}}{\delta}\right)$
Open Calculator
ex $0.014246 \mathrm{~N}^{*} \mathrm{~m}^{2}=\left(\frac{5}{384}\right) \cdot\left(\frac{0.842 \mathrm{kN} / \mathrm{m} \cdot(5 \mathrm{~m})^{4}}{48.1 \mathrm{~m}}\right)$
29) Flexural Rigidity given Deflection due to Prestressing for Singly Harped Tendon
$f \mathrm{EX}=\frac{\mathrm{Ft} \cdot \mathrm{L}^{3}}{48 \cdot \delta}$
Open Calculator
ex $16.87024 \mathrm{~N}^{*} \mathrm{~m}^{2}=\frac{311.6 \mathrm{~N} \cdot(5 \mathrm{~m})^{3}}{48 \cdot 48.1 \mathrm{~m}}$
30) Length of Span given Deflection due to Prestressing for Doubly Harped Tendon
$f \times L=\left(\frac{\delta \cdot 48 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{p}}}{\mathrm{a} \cdot\left(4-3 \cdot \mathrm{a}^{2}\right) \cdot \mathrm{Ft}}\right)^{\frac{1}{3}}$
ex $4.219812 \mathrm{~m}=\left(\frac{48.1 \mathrm{~m} \cdot 48 \cdot 15 \mathrm{~Pa} \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{0.8 \cdot\left(4-3 \cdot(0.8)^{2}\right) \cdot 311.6 \mathrm{~N}}\right)^{\frac{1}{3}}$
31) Length of Span given Deflection due to Prestressing for Singly Harped Tendon
$f \mathbf{x}=\left(\frac{\delta \cdot 48 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{p}}}{\mathrm{Ft}}\right)^{\frac{1}{3}}$
ex $5.000471 \mathrm{~m}=\left(\frac{48.1 \mathrm{~m} \cdot 48 \cdot 15 \mathrm{~Pa} \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{311.6 \mathrm{~N}}\right)^{\frac{1}{3}}$
32) Moment of Inertia for Deflection due to Prestressing for Parabolic Tendon
$\mathrm{fx}_{\mathrm{x}} \mathrm{I}=\left(\frac{5}{384}\right) \cdot\left(\frac{\mathrm{W}_{\mathrm{up}} \cdot \mathrm{L}^{4}}{\mathrm{e}}\right)$
ex $137.0443 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\left(\frac{5}{384}\right) \cdot\left(\frac{0.842 \mathrm{kN} / \mathrm{m} \cdot(5 \mathrm{~m})^{4}}{50 \mathrm{~Pa}}\right)$
33) Moment of Inertia for Deflection due to Prestressing in Doubly Harped Tendon
$f \mathrm{fx}=\frac{\mathrm{a} \cdot\left(\mathrm{a}^{2}\right) \cdot \mathrm{Ft} \cdot \mathrm{L}^{3}}{48 \cdot \mathrm{e} \cdot \delta}$
ex $0.172751 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\frac{0.8 \cdot\left((0.8)^{2}\right) \cdot 311.6 \mathrm{~N} \cdot(5 \mathrm{~m})^{3}}{48 \cdot 50 \mathrm{~Pa} \cdot 48.1 \mathrm{~m}}$
34) Moment of Inertia for Deflection due to Prestressing of Singly Harped Tendon
$\mathrm{f} \mathrm{I}_{\mathrm{p}}=\frac{\mathrm{Ft} \cdot \mathrm{L}^{3}}{48 \cdot \mathrm{e} \cdot \delta}$
ex $0.337405 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\frac{311.6 \mathrm{~N} \cdot(5 \mathrm{~m})^{3}}{48 \cdot 50 \mathrm{~Pa} \cdot 48.1 \mathrm{~m}}$
35) Uplift Thrust given Deflection due to Prestressing for Doubly Harped Tendon
$f \mathrm{Ft}=\frac{\delta \cdot 24 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{p}}}{\mathrm{a} \cdot\left(3-4 \cdot \mathrm{a}^{2}\right) \cdot \mathrm{L}^{3}}$
ex $442.7386 \mathrm{~N}=\frac{48.1 \mathrm{~m} \cdot 24 \cdot 15 \mathrm{~Pa} \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{0.8 \cdot\left(3-4 \cdot(0.8)^{2}\right) \cdot(5 \mathrm{~m})^{3}}$
36) Uplift Thrust given Deflection due to Prestressing for Singly Harped Tendon
$\mathrm{fx} \mathrm{Ft}=\frac{\delta \cdot 48 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{p}}}{\mathrm{L}^{3}}$
Open Calculator ك
ex $311.688 \mathrm{~N}=\frac{48.1 \mathrm{~m} \cdot 48 \cdot 15 \mathrm{~Pa} \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{(5 \mathrm{~m})^{3}}$
37) Uplift Thrust when Deflection due to Prestressing for Parabolic Tendon
$f \mathbf{x} \mathrm{~W}_{\mathrm{up}}=\frac{\delta \cdot 384 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{A}}}{5 \cdot \mathrm{~L}^{4}}$
ex $0.84225 \mathrm{kN} / \mathrm{m}=\frac{48.1 \mathrm{~m} \cdot 384 \cdot 15 \mathrm{~Pa} \cdot 9.5 \mathrm{~m}^{4}}{5 \cdot(5 \mathrm{~m})^{4}}$
38) Young's Modulus given Deflection due to Prestressing for Doubly Harped Tendon
$\mathrm{fx}_{\mathrm{x}} \mathrm{E}=\frac{\mathrm{a} \cdot\left(3-4 \cdot \mathrm{a}^{2}\right) \cdot \mathrm{Ft} \cdot \mathrm{L}^{3}}{48 \cdot \delta \cdot \mathrm{I}_{\mathrm{p}}}$
ex $5.278509 \mathrm{~Pa}=$

$$
\frac{0.8 \cdot\left(3-4 \cdot(0.8)^{2}\right) \cdot 311.6 \mathrm{~N} \cdot(5 \mathrm{~m})^{3}}{48 \cdot 48.1 \mathrm{~m} \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}
$$

39) Young's Modulus given Deflection due to Prestressing for Parabolic Tendon
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{E}}=\left(\frac{5}{384}\right) \cdot\left(\frac{\mathrm{W}_{\mathrm{up}} \cdot \mathrm{L}^{4}}{\delta \cdot \mathrm{I}_{\mathrm{A}}}\right)$
ex $14.99554 \mathrm{~Pa}=\left(\frac{5}{384}\right) \cdot\left(\frac{0.842 \mathrm{kN} / \mathrm{m} \cdot(5 \mathrm{~m})^{4}}{48.1 \mathrm{~m} \cdot 9.5 \mathrm{~m}^{4}}\right)$
40) Young's Modulus given Deflection due to Prestressing for Singly Harped Tendon
$\mathrm{fx} \mathrm{E}=\frac{\mathrm{Ft} \cdot \mathrm{L}^{3}}{48 \cdot \delta \cdot \mathrm{I}_{\mathrm{p}}}$
ex $14.99576 \mathrm{~Pa}=\frac{311.6 \mathrm{~N} \cdot(5 \mathrm{~m})^{3}}{48 \cdot 48.1 \mathrm{~m} \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}$

Variables Used

- a Part of Span Length
- $\mathbf{A}_{\mathbf{s}}$ Area of Reinforcement (Square Millimeter)
- acr Shortest Distance (Centimeter)
- As Area of Prestressing Steel (Square Millimeter)
- C Couple Force (Kilonewton)
- $\mathbf{C}_{\mathbf{c}}$ Total Compression on Concrete (Newton)
- C min $_{\text {minimum }}$ Clear Cover (Centimeter)
- d Effective Depth of Reinforcement (Millimeter)
- d' Effective Cover (Millimeter)
- D Diameter of Longitudinal Bar (Meter)
- DCc Distance from Compression to Crack Width (Meter)
- e Elastic Modulus (Pascal)
- E Young's Modulus (Pascal)
- $\mathbf{E}_{\mathbf{c}}$ Modulus of Elasticity of Concrete (Megapascal)
- $\mathbf{E}_{\mathbf{p}}$ Prestressed Young's Modulus (Kilogram per Cubic Centimeter)
- $\mathbf{E}_{\mathbf{s}}$ Modulus of Elasticity of Steel Reinforcement (Megapascal)
- El Flexural Rigidity (Newton Square Meter)
- Es Modulus of Elasticity of Steel
- Ft Thrust Force (Newton)
- h Total Depth (Centimeter)
- h Height of Crack (Meter)
- \mathbf{I}_{A} Second Moment of Area (Meter ${ }^{4}$)
- $\mathbf{I}_{\mathbf{p}}$ Moment of Inertia in Prestress (Kilogram Square Meter)
- L Span Length (Meter)
- Leff Effective Length (Meter)
- $\mathbf{N}_{\mathbf{u}}$ Tension Force (Newton)
- s Center to Center Spacing (Centimeter)
- W $\mathbf{\text { cr }}$ Crack Width (Millimeter)
- Wup Upward Thrust (Kilonewton per Meter)
- X Depth of Neutral Axis (Millimeter)
- z Center-to-center Distance (Angstrom)
- δ Deflection due to Moments on Arch Dam (Meter)
- Δ po Deflection due to Prestressing Force (Centimeter)
- Δ st Short Term Deflection (Centimeter)
- $\boldsymbol{\Delta} \mathbf{s w}$ Deflection due to Self Weight (Centimeter)
- ε Strain
- ε_{1} Strain at Selected Level
- $\varepsilon_{\mathbf{c}}$ Strain in Concrete
- ε_{m} Average Strain
- $\boldsymbol{\varepsilon S}$ Strain in Longitudinal Reinforcement

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm), Centimeter (cm), Meter (m), Angstrom (A) Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²) Area Unit Conversion \mathcal{E}
- Measurement: Pressure in Megapascal (MPa), Pascal (Pa)

Pressure Unit Conversion

- Measurement: Force in Newton (N), Kilonewton (kN)

Force Unit Conversion

- Measurement: Surface Tension in Kilonewton per Meter (kN/m) Surface Tension Unit Conversion
- Measurement: Density in Kilogram per Cubic Centimeter (kg/cm ${ }^{3}$) Density Unit Conversion
- Measurement: Moment of Inertia in Kilogram Square Meter (kg•m²) Moment of Inertia Unit Conversion
- Measurement: Second Moment of Area in Meter ${ }^{4}\left(m^{4}\right)$

Second Moment of Area Unit Conversion

- Measurement: Flexural Rigidity in Newton Square Meter ($\mathrm{N}^{*} \mathrm{~m}^{2}$)

Flexural Rigidity Unit Conversion

Check other formula lists

- Analysis of Prestressing and Bending Stresses Formulas
- Crack Width and Deflection of Prestress Concrete Members Formulas
- General Principles of Prestressed Concrete Formulas
- Transmission of Prestress Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

