
calculatoratoz.com

unitsconverters.com

Parallelogram Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 31 Parallelogram Formulas

Parallelogram

Angles of Parallelogram ©

1) Acute Angle of Parallelogram
$\mathrm{fx} \quad \angle_{\text {Acute }}=\pi-\angle_{\text {Obtuse }}$
Open Calculator
ex $45^{\circ}=\pi-135^{\circ}$
2) Obtuse Angle of Parallelogram
$\mathrm{fx} \angle_{\text {Obtuse }}=\pi-\angle_{\text {Acute }}$
Open Calculator
ex $135^{\circ}=\pi-45^{\circ}$

Area of Parallelogram ©

3) Area of Parallelogram
$f \mathrm{f} A=\mathrm{e}_{\text {Long }} \cdot \mathrm{e}_{\text {Short }} \cdot \sin \left(\angle_{\text {Acute }}\right)$
Open Calculator
ex $59.39697 \mathrm{~m}^{2}=12 \mathrm{~m} \cdot 7 \mathrm{~m} \cdot \sin \left(45^{\circ}\right)$
4) Area of Parallelogram given Area of Long Diagonal Triangle
$f \mathrm{f} \quad \mathrm{A}=2 \cdot \mathrm{~A}_{\mathrm{l}(\text { Triangle })}$
Open Calculator
ex $60 \mathrm{~m}^{2}=2 \cdot 30 \mathrm{~m}^{2}$
5) Area of Parallelogram given Diagonals and Acute Angle between Diagonals

$$
\mathrm{fx}_{\mathrm{A}}=\frac{1}{2} \cdot \mathrm{~d}_{\text {Long }} \cdot \mathrm{d}_{\text {Short }} \cdot \sin \left(\angle_{\mathrm{d}(\text { Acute })}\right)
$$

Open Calculator
ex $62.0496 \mathrm{~m}^{2}=\frac{1}{2} \cdot 18 \mathrm{~m} \cdot 9 \mathrm{~m} \cdot \sin \left(50^{\circ}\right)$
6) Area of Parallelogram given Diagonals and Obtuse Angle between Diagonals $\boxed{6}$
$f \mathrm{f} A=\frac{1}{2} \cdot \mathrm{~d}_{\text {Long }} \cdot \mathrm{d}_{\text {Short }} \cdot \sin \left(\angle_{\mathrm{d}(\text { Obtuse })}\right)$
Open Calculator
ex $62.0496 \mathrm{~m}^{2}=\frac{1}{2} \cdot 18 \mathrm{~m} \cdot 9 \mathrm{~m} \cdot \sin \left(130^{\circ}\right)$
7) Area of Parallelogram given Heights and Acute Angle
$\mathrm{fx} \mathrm{A}=\frac{\mathrm{h}_{\text {Long }} \cdot \mathrm{h}_{\text {Short }}}{\sin \left(\angle_{\text {Acute }}\right)}$
ex $56.56854 \mathrm{~m}^{2}=\frac{5 \mathrm{~m} \cdot 8 \mathrm{~m}}{\sin \left(45^{\circ}\right)}$
8) Area of Parallelogram given Heights and Obtuse Angle
$f \times \mathrm{A}=\frac{\mathrm{h}_{\text {Long }} \cdot \mathrm{h}_{\text {Short }}}{\sin \left(\angle_{\text {Obtuse }}\right)}$
ex $56.56854 \mathrm{~m}^{2}=\frac{5 \mathrm{~m} \cdot 8 \mathrm{~m}}{\sin \left(135^{\circ}\right)}$
9) Area of Parallelogram given Long Edge and Height to Long Edge
$f \mathbf{x} \mathrm{~A}=\mathrm{e}_{\text {Long }} \cdot \mathrm{h}_{\text {Long }}$
Open Calculator
ex $60 \mathrm{~m}^{2}=12 \mathrm{~m} \cdot 5 \mathrm{~m}$
10) Area of Parallelogram given Short Edge and Height to Short Edge
$\mathrm{fx} \mathrm{A}=\mathrm{e}_{\text {Short }} \cdot \mathrm{h}_{\text {Short }}$
Open Calculator
ex $56 \mathrm{~m}^{2}=7 \mathrm{~m} \cdot 8 \mathrm{~m}$
11) Area of Parallelogram given Sides and Obtuse Angle between Sides
$\mathrm{fx}_{\mathrm{x}} \mathrm{A}=\mathrm{e}_{\text {Long }} \cdot \mathrm{e}_{\text {Short }} \cdot \sin \left(\angle_{\text {Obtuse }}\right)$
Open Calculator
ex $59.39697 \mathrm{~m}^{2}=12 \mathrm{~m} \cdot 7 \mathrm{~m} \cdot \sin \left(135^{\circ}\right)$
Diagonal of Parallelogram ©
Long Diagonal of Parallelogram
12) Long Diagonal of Parallelogram
$f \mathrm{x} \mathrm{d}_{\text {Long }}=\sqrt{\left(2 \cdot \mathrm{e}_{\text {Long }}^{2}\right)+\left(2 \cdot \mathrm{e}_{\text {Short }}^{2}\right)-\mathrm{d}_{\text {Short }}^{2}}$
ex $17.46425 \mathrm{~m}=\sqrt{\left(2 \cdot(12 \mathrm{~m})^{2}\right)+\left(2 \cdot(7 \mathrm{~m})^{2}\right)-(9 \mathrm{~m})^{2}}$
13) Long Diagonal of Parallelogram given Area, Short Diagonal and Acute Angle between Diagonals
$f \times \mathrm{d}_{\text {Long }}=\frac{2 \cdot \mathrm{~A}}{\mathrm{~d}_{\text {Short }} \cdot \sin \left(\angle_{d(\text { Acute })}\right)}$
$\mathrm{ex} 17.40543 \mathrm{~m}=\frac{2 \cdot 60 \mathrm{~m}^{2}}{9 \mathrm{~m} \cdot \sin \left(50^{\circ}\right)}$
14) Long Diagonal of Parallelogram given Sides and Acute Angle between Sides

$$
\mathrm{d}_{\text {Long }}=\sqrt{\mathrm{e}_{\text {Long }}^{2}+\mathrm{e}_{\text {Short }}^{2}+\left(2 \cdot \mathrm{e}_{\text {Long }} \cdot \mathrm{e}_{\text {Short }} \cdot \cos \left(\angle_{\text {Acute }}\right)\right)}
$$

$$
\mathrm{ex} 17.65769 \mathrm{~m}=\sqrt{(12 \mathrm{~m})^{2}+(7 \mathrm{~m})^{2}+\left(2 \cdot(12 \mathrm{~m}) \cdot(7 \mathrm{~m}) \cdot \cos \left(45^{\circ}\right)\right)}
$$

15) Long Diagonal of Parallelogram given Sides and Obtuse Angle between sides

$$
\left.\mathrm{d}_{\text {Long }}=\sqrt{\mathrm{e}_{\text {Long }}^{2}+\mathrm{e}_{\text {Short }}^{2}-\left(2 \cdot \mathrm{e}_{\text {Long }} \cdot \mathrm{e}_{\text {Short }} \cdot \cos \left(\angle_{\text {Obtuse }}\right)\right)}\right)
$$

ex $17.65769 \mathrm{~m}=\sqrt{(12 \mathrm{~m})^{2}+(7 \mathrm{~m})^{2}-\left(2 \cdot(12 \mathrm{~m}) \cdot(7 \mathrm{~m}) \cdot \cos \left(135^{\circ}\right)\right)}$

Short Diagonal of Parallelogram

16) Short Diagonal of Parallelogram
$\mathrm{fx}_{\mathrm{X}}^{\mathrm{d}_{\text {Short }}}=\sqrt{\left(2 \cdot \mathrm{e}_{\text {Long }}^{2}\right)+\left(2 \cdot \mathrm{e}_{\text {Short }}^{2}\right)-\mathrm{d}_{\text {Long }}^{2}}$
Open Calculator
$\mathbf{e x} 7.874008 \mathrm{~m}=\sqrt{\left(2 \cdot(12 \mathrm{~m})^{2}\right)+\left(2 \cdot(7 \mathrm{~m})^{2}\right)-(18 \mathrm{~m})^{2}}$
17) Short Diagonal of Parallelogram given Area, Long Diagonal and Obtuse Angle between Diagonals
$\mathrm{fx}_{\mathrm{x}} \mathrm{d}_{\text {Short }}=\frac{2 \cdot \mathrm{~A}}{\mathrm{~d}_{\text {Long }} \cdot \sin \left(\angle_{\mathrm{d}(\text { Obtuse })}\right)}$
Open Calculator
ex $8.702715 \mathrm{~m}=\frac{2 \cdot 60 \mathrm{~m}^{2}}{18 \mathrm{~m} \cdot \sin \left(130^{\circ}\right)}$
18) Short Diagonal of Parallelogram given Sides and Acute Angle between Sides

$$
\mathrm{d}_{\text {Short }}=\sqrt{\mathrm{e}_{\text {Long }}^{2}+\mathrm{e}_{\text {Short }}^{2}-\left(2 \cdot \mathrm{e}_{\text {Long }} \cdot \mathrm{e}_{\text {Short }} \cdot \cos \left(\angle_{\text {Acute }}\right)\right)}
$$

$\operatorname{ex} 8.614294 \mathrm{~m}=\sqrt{(12 \mathrm{~m})^{2}+(7 \mathrm{~m})^{2}-\left(2 \cdot(12 \mathrm{~m}) \cdot(7 \mathrm{~m}) \cdot \cos \left(45^{\circ}\right)\right)}$
19) Short Diagonal of Parallelogram given Sides and Obtuse Angle between Sides
$f x$

$$
\mathrm{d}_{\text {Short }}=\sqrt{\mathrm{e}_{\text {Long }}^{2}+\mathrm{e}_{\text {Short }}^{2}+\left(2 \cdot \mathrm{e}_{\text {Long }} \cdot \mathrm{e}_{\text {Short }} \cdot \cos \left(\angle_{\text {Obtuse }}\right)\right)}
$$

$\mathrm{ex} 8.614294 \mathrm{~m}=\sqrt{(12 \mathrm{~m})^{2}+(7 \mathrm{~m})^{2}+\left(2 \cdot(12 \mathrm{~m}) \cdot(7 \mathrm{~m}) \cdot \cos \left(135^{\circ}\right)\right)}$

Perimeter of Parallelogram ©

20) Perimeter of Parallelogram

$$
f \mathrm{x} P=\left(2 \cdot \mathrm{e}_{\text {Long }}\right)+\left(2 \cdot \mathrm{e}_{\text {Short }}\right)
$$

Open Calculator
ex $38 \mathrm{~m}=(2 \cdot 12 \mathrm{~m})+(2 \cdot 7 \mathrm{~m})$
21) Perimeter of Parallelogram given Diagonals and Long Edge
$f \times P=2 \cdot\left(\mathrm{e}_{\text {Long }}+\sqrt{\left(\frac{\mathrm{d}_{\text {Long }}^{2}+\mathrm{d}_{\text {Short }}^{2}}{2}\right)-\mathrm{e}_{\text {Long }}^{2}}\right)$
$\mathbf{e x} 39.29706 \mathrm{~m}=2 \cdot\left((12 \mathrm{~m})+\sqrt{\left(\frac{(18 \mathrm{~m})^{2}+(9 \mathrm{~m})^{2}}{2}\right)-(12 \mathrm{~m})^{2}}\right)$

Side of Parallelogram ©

Long Edge of Parallelogram

22) Long Edge of Parallelogram
$f \mathrm{x} \mathrm{e}_{\text {Long }}=\frac{\mathrm{A}}{\mathrm{h}_{\text {Long }}}$
Open Calculator
$12 \mathrm{~m}=\frac{60 \mathrm{~m}^{2}}{5 \mathrm{~m}}$
23) Long Edge of Parallelogram given Diagonals and Acute Angle between Diagonals
$f x$

$$
\mathrm{e}_{\text {Long }}=\frac{1}{2} \cdot \sqrt{\mathrm{~d}_{\text {Long }}^{2}+\mathrm{d}_{\text {Short }}^{2}+\left(2 \cdot \mathrm{~d}_{\text {Long }} \cdot \mathrm{d}_{\text {Short }} \cdot \cos \left(\angle_{\mathrm{d}(\text { Acute })}\right)\right)}
$$

ex $12.38208 \mathrm{~m}=\frac{1}{2} \cdot \sqrt{(18 \mathrm{~m})^{2}+(9 \mathrm{~m})^{2}+\left(2 \cdot(18 \mathrm{~m}) \cdot(9 \mathrm{~m}) \cdot \cos \left(50^{\circ}\right)\right)}$
24) Long Edge of Parallelogram given Diagonals and Obtuse Angle between Diagonals

$$
\mathrm{e}_{\text {Long }}=\frac{1}{2} \cdot \sqrt{\mathrm{~d}_{\text {Long }}^{2}+\mathrm{d}_{\text {Short }}^{2}-\left(2 \cdot \mathrm{~d}_{\text {Long }} \cdot \mathrm{d}_{\text {Short }} \cdot \cos \left(\angle_{\mathrm{d}(\text { Obtuse })}\right)\right)}
$$

ex $12.38208 \mathrm{~m}=\frac{1}{2} \cdot \sqrt{(18 \mathrm{~m})^{2}+(9 \mathrm{~m})^{2}-\left(2 \cdot(18 \mathrm{~m}) \cdot(9 \mathrm{~m}) \cdot \cos \left(130^{\circ}\right)\right)}$
25) Long Edge of Parallelogram given Diagonals and Short Edge

ex $12.38951 \mathrm{~m}=\sqrt{\frac{(18 \mathrm{~m})^{2}+(9 \mathrm{~m})^{2}-\left(2 \cdot(7 \mathrm{~m})^{2}\right)}{2}}$
26) Long Edge of Parallelogram given Height to Short Edge and Acute Angle between Sides
$f \mathrm{x} \mathrm{e}_{\text {Long }}=\frac{\mathrm{h}_{\text {Short }}}{\sin \left(\angle_{\text {Acute }}\right)}$
ex $11.31371 \mathrm{~m}=\frac{8 \mathrm{~m}}{\sin \left(45^{\circ}\right)}$

Short Edge of Parallelogram

27) Short Edge of Parallelogram
$f \times \mathrm{e}_{\text {Short }}=\frac{\mathrm{A}}{\mathrm{h}_{\text {Short }}}$
ex $7.5 \mathrm{~m}=\frac{60 \mathrm{~m}^{2}}{8 \mathrm{~m}}$
28) Short Edge of Parallelogram given Diagonals and Acute Angle between Diagonals
$f x$
$\mathrm{e}_{\text {Short }}=\frac{1}{2} \cdot \sqrt{\mathrm{~d}_{\text {Long }}^{2}+\mathrm{d}_{\text {Short }}^{2}-\left(2 \cdot \mathrm{~d}_{\text {Long }} \cdot \mathrm{d}_{\text {Short }} \cdot \cos \left(\angle_{\mathrm{d}(\text { Acute })}\right)\right)}$
ex $7.013145 \mathrm{~m}=\frac{1}{2} \cdot \sqrt{(18 \mathrm{~m})^{2}+(9 \mathrm{~m})^{2}-\left(2 \cdot(18 \mathrm{~m}) \cdot(9 \mathrm{~m}) \cdot \cos \left(50^{\circ}\right)\right)}$
29) Short Edge of Parallelogram given Diagonals and Long Edge

30) Short Edge of Parallelogram given Diagonals and Obtuse Angle between Diagonals

$$
\mathrm{e}_{\text {Short }}=\frac{1}{2} \cdot \sqrt{\mathrm{~d}_{\text {Long }}^{2}+\mathrm{d}_{\text {Short }}^{2}+\left(2 \cdot \mathrm{~d}_{\text {Long }} \cdot \mathrm{d}_{\text {Short }} \cdot \cos \left(\angle_{\mathrm{d}(\text { Obtuse })}\right)\right)}
$$

ex $7.013145 \mathrm{~m}=\frac{1}{2} \cdot \sqrt{(18 \mathrm{~m})^{2}+(9 \mathrm{~m})^{2}+\left(2 \cdot(18 \mathrm{~m}) \cdot(9 \mathrm{~m}) \cdot \cos \left(130^{\circ}\right)\right)}$

31) Short Edge of Parallelogram given Height to Long Edge and Acute Angle between Sides

$f \mathrm{x} \mathrm{e}_{\text {Short }}=\frac{\mathrm{h}_{\text {Long }}}{\sin \left(\angle_{\text {Acute }}\right)}$
ex $7.071068 \mathrm{~m}=\frac{5 \mathrm{~m}}{\sin \left(45^{\circ}\right)}$

Variables Used

- \angle Acute Acute Angle of Parallelogram (Degree)
- $\angle \mathbf{d}($ Acute $)$ Acute Angle between Diagonals of Parallelogram (Degree)
- $\angle_{\mathrm{d}(\text { Obtuse) }}$ Obtuse Angle between Diagonals of Parallelogram (Degree)
- LObtuse Obtuse Angle of Parallelogram (Degree)
- A Area of Parallelogram (Square Meter)
- $\mathbf{A l}_{\mathbf{l}(\text { Triangle) }}$ Area of Long Diagonal Triangle of Parallelogram (Square Meter)
- $\mathbf{d}_{\text {Long }}$ Long Diagonal of Parallelogram (Meter)
- $\mathbf{d}_{\text {Short }}$ Short Diagonal of Parallelogram (Meter)
- $\mathbf{e}_{\text {Long }}$ Long Edge of Parallelogram (Meter)
- $\mathbf{E S h o r t}^{\text {Short Edge of Parallelogram (Meter) }}$
- $\mathbf{h}_{\text {Long }}$ Height to Long Edge of Parallelogram (Meter)
- $\mathbf{h}_{\text {Short }}$ Height to Short Edge of Parallelogram (Meter)
- P Perimeter of Parallelogram (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: cos, $\cos ($ Angle)

Trigonometric cosine function

- Function: sin, sin(Angle)

Trigonometric sine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$ Angle Unit Conversion

Check other formula lists

- Annulus Formulas
- Antiparallelogram Formulas
- Arrow Hexagon Formulas
- Astroid Formulas
- Bulge Formulas
- Cardioid Formulas
- Circular Arc Quadrangle Formulas
- Concave Pentagon Formulas
- Concave Quadrilateral Formulas
- Concave Regular Hexagon Formulas
- Concave Regular Pentagon Formulas
- Crossed Rectangle Formulas $\sqrt{ }$
- Cut Rectangle Formulas
- Cyclic Quadrilateral Formulas
- Cycloid Formulas
- Decagon Formulas \leftrightarrows
- Dodecagon Formulas
- Double Cycloid Formulas
- Fourstar Formulas
- Frame Formulas
- Golden Rectangle Formulas
- Grid Formulas
- H Shape Formulas \mathbb{Z}
- Half Yin-Yang Formulas
- Heart Shape Formulas
- Hendecagon Formulas
- Heptagon Formulas
- Hexadecagon Formulas
- Hexagon Formulas
- Hexagram Formulas \longleftarrow
- House Shape Formulas
- Hyperbola Formulas \longleftarrow
- Hypocycloid Formulas
- Isosceles Trapezoid Formulas $\mathbb{\Omega}$
- Koch Curve Formulas
- L Shape Formulas
$\boxed{\boxed{W}}$
- Lune Formulas
- N-gon Formulas
- Nonagon Formulas $\sqrt{5}$
- Octagon Formulas
- Octagram Formulas
- Open Frame Formulas
- Parallelogram Formulas
- Pentagon Formulas
- Pentagram Formulas
- Polygram Formulas $\sqrt{ }$
- Quadrilateral Formulas
- Quarter Circle Formulas
- Rectangle Formulas
- Rectangular Hexagon Formulas
- Regular Polygon Formulas
- Reuleaux Triangle Formulas
- Rhombus Formulas
- Right Trapezoid Formulas
- Round Corner Formulas
- Salinon Formulas
- Semicircle Formulas
- Sharp Kink Formulas
- Square Formulas
- Star of Lakshmi Formulas
- Stretched Hexagon Formulas
- T Shape Formulas
- Tangential Quadrilateral Formulas ©. X Shape Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

