Relation between Forces on the Prototype and Forces on the Model Formulas... 1/10

Relation between Forces on the Prototype and Forces on the Model Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

<u>Please leave your feedback here...</u>

© calculatoratoz.com. A softusvista inc. venture!

List of 18 Relation between Forces on the Prototype and Forces on the Model Formulas

Relation between Forces on the Prototype and Forces on the Model C

© calculatoratoz.com. A softusvista inc. venture!

$$12N = \frac{69990.85N}{5832.571}$$

5) Force on Prototype

fx
$${
m F_p}=lpha {
m F} \cdot {
m F_m}$$

$$\mathbf{x} \ 69990.85 \mathrm{N} = 5832.571 \cdot 12 \mathrm{N}$$

6) Inertial Forces given Kinematic Viscosity 🕑

fx
$$F_i = rac{F_v \cdot V_f \cdot L}{v}$$

ex
$$3.636364 \mathrm{kN} = rac{0.0504 \mathrm{kN} \cdot 20 \mathrm{m/s} \cdot 3 \mathrm{m}}{0.8316 \mathrm{m}^2/\mathrm{s}}$$

7) Inertial Forces using Newton's Friction Model

$$\label{eq:Fi} \begin{split} \text{fx} \ F_i &= \frac{F_v \cdot \rho_{fluid} \cdot V_f \cdot L}{\mu_{viscosity}} \end{split} \qquad \begin{array}{l} \text{Open Calculator} \\ \text{Open Calculator} \\ \text{Open Calculator} \\ \\ \text{Open Calculator} \\ \end{array} \\ \\ \text{Solution} \\ \text{Solution} \\ \text{Solution} \\ \text{Solution} \\ \text{Open Calculator} \\ \end{array}$$

Open Calculator

Open Calculator

Open Calculator

Relation between Forces on the Prototype and Forces on the Model Formulas... 4/10

8) Kinematic Viscosity for Ratio of Inertial Forces and Viscous Force

Relation between Forces on the Prototype and Forces on the Model Formulas... 5/10

fx
$$\alpha L = \sqrt{\frac{F_p}{\alpha \rho \cdot \alpha V^2 \cdot F_m}}$$

ex $18.0045 = \sqrt{\frac{69990.85N}{0.9999 \cdot (4.242)^2 \cdot 12N}}$

Relation between Forces on the Prototype and Forces on the Model Formulas... 6/10

15) Scale Factor for Velocity given Forces on Prototype and Force on Model

Open Calculator 🖸

fx
$$\alpha V = \sqrt{\frac{\Gamma_{p}}{\alpha \rho \cdot \alpha L^{2} \cdot F_{m}}}$$

Г

ex
$$4.24306 = \sqrt{rac{69990.85 \mathrm{N}}{0.9999 \cdot (18)^2 \cdot 12 \mathrm{N}}}$$

16) Velocity given Kinematic Viscosity, Ratio of Inertial Forces and Viscous Forces

$$\label{eq:Vf} \begin{split} \text{Fx} & V_f = \frac{F_i \cdot \mu_{viscosity}}{F_v \cdot \rho_{fluid} \cdot L} \end{split} \\ \text{Open Calculator } \text{C} \\ \text{ex} & 20.02332 \text{m/s} = \frac{3.636 \text{kN} \cdot 10.2 \text{P}}{0.0504 \text{kN} \cdot 1.225 \text{kg/m}^3 \cdot 3 \text{m}} \end{split}$$

Relation between Forces on the Prototype and Forces on the Model Formulas... 7/10

18) Viscous Forces using Newton's Friction model 🕑

$$\label{eq:Fv} \begin{split} \text{F}_v &= \frac{F_i \cdot \mu_{viscosity}}{\rho_{fluid} \cdot V_f \cdot L} \end{split} \qquad \begin{array}{l} \text{Open Calculator Gradients} \\ \text{Open Calculator Gradeets} \\$$

Variables Used

- F_i Inertia Forces (Kilonewton)
- F_m Force on Model (Newton)
- F_p Force on Prototype (Newton)
- **F**_v Viscous Force (Kilonewton)
- L Characteristic length (Meter)
- V_f Velocity of Fluid (Meter per Second)
- αF Scale Factor for Inertia Forces
- αL Scale Factor for Length
- αV Scale Factor for Velocity
- αρ Scale Factor for Density of Fluid
- **µ**viscosity Dynamic Viscosity (Poise)
- V Kinematic Viscosity for Model Analysis (Square Meter per Second)
- **P**fluid Density of Fluid (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N)
 Force Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P)
 Dynamic Viscosity Unit Conversion
- Measurement: Kinematic Viscosity in Square Meter per Second (m²/s) Kinematic Viscosity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion

Relation between Forces on the Prototype and Forces on the Model Formulas... 10/10

Check other formula lists

 Froude Scaling and Scale Factor
 Relation between Forces on the Prototype and Forces on the Model Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/21/2024 | 6:01:01 AM UTC

Please leave your feedback here ...

