Open Conductor Fault Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 46 Open Conductor Fault Formulas

Open Conductor Fault

One Conductor Open ©

1) A-Phase EMF using Positive Sequence Voltage (One Conductor Open)
$\mathrm{fx} \mathrm{E}_{\mathrm{a}(\text { oco })}=\mathrm{V}_{1(\text { oco })}+\mathrm{I}_{1(\text { oco })} \cdot \mathrm{Z}_{1(\text { oco })}$
ex $29.38794 \mathrm{~V}=13.5 \mathrm{~V}+2.001 \mathrm{~A} \cdot 7.94 \Omega$
2) A-Phase EMF using Zero Sequence Impedance (One Conductor Open)
$f \times \mathrm{E}_{\mathrm{a}(\mathrm{oco})}=\mathrm{I}_{1(\mathrm{oco})} \cdot\left(\mathrm{Z}_{1(\mathrm{oco})}+\left(\frac{\mathrm{Z}_{0(\mathrm{oco})} \cdot \mathrm{Z}_{2(\mathrm{oco})}}{\mathrm{Z}_{0(\mathrm{oco})}+\mathrm{Z}_{2(\mathrm{oco})}}\right)\right)$
ex $29.46126 \mathrm{~V}=2.001 \mathrm{~A} \cdot\left(7.94 \Omega+\left(\frac{8 \Omega \cdot 44.6 \Omega}{8 \Omega+44.6 \Omega}\right)\right)$
3) B-Phase Current (One Conductor Open)
$\mathrm{fx}_{\mathrm{x}} \mathrm{I}_{\mathrm{b}(\mathrm{oco})}=3 \cdot \mathrm{I}_{0(\mathrm{oco})}-\mathrm{I}_{\mathrm{c}(\mathrm{oco})}$
ex $2.7 \mathrm{~A}=3 \cdot 2.20 \mathrm{~A}-3.9 \mathrm{~A}$
4) C-Phase Current (One Conductor Open)
$f \mathrm{x} \mathrm{I}_{\mathrm{c}(\text { oco })}=3 \cdot \mathrm{I}_{0(\text { oco })}-\mathrm{I}_{\mathrm{b}(\text { oco })}$
ex $3.9 \mathrm{~A}=3 \cdot 2.20 \mathrm{~A}-2.7 \mathrm{~A}$
5) Potential Difference between A-Phase and Neutral (One Conductor Open)
$f \mathrm{f} \mathrm{V}_{\mathrm{a}(\text { oco })}=\mathrm{V}_{0(\text { oco })}+\mathrm{V}_{1(\text { oco })}+\mathrm{V}_{2(\text { oco })}$
ex $11.956 \mathrm{~V}=-17.6 \mathrm{~V}+13.5 \mathrm{~V}+16.056 \mathrm{~V}$
6) Potential Difference between A-Phase using Zero Sequence Potential Difference (One Conductor Open)
$f x \mathrm{Vaa}^{\prime}{ }_{(\mathrm{oco})}=\frac{\mathrm{Vaa}^{\prime}{ }_{0(\mathrm{oco})}}{3}$
ex $1.223333 \mathrm{~V}=\frac{3.67 \mathrm{~V}}{3}$

Negative Sequence

7) Negative Sequence Current using Negative Sequence Impedance (One Conductor Open)
fx $\mathrm{I}_{2(\mathrm{oco})}=-\frac{\mathrm{V}_{2(\mathrm{oco})}}{\mathrm{Z}_{2(\mathrm{oco})}}$
ex $-0.36 \mathrm{~A}=-\frac{16.056 \mathrm{~V}}{44.6 \Omega}$
8) Negative Sequence Potential Difference using A-Phase Current (One Conductor Open)
$f \mathrm{f}$
Open Calculator
$\mathrm{Vaa}^{2(\mathrm{oco})}, \mathrm{I}_{\mathrm{a}(\mathrm{oco})} \cdot\left(\frac{\mathrm{Z}_{0(\mathrm{oco})} \cdot \mathrm{Z}_{1(\mathrm{oco})} \cdot \mathrm{Z}_{2(\mathrm{oco})}}{\left(\mathrm{Z}_{0(\mathrm{oco})} \cdot \mathrm{Z}_{1(\mathrm{oco})}\right)+\left(\mathrm{Z}_{1(\mathrm{oco})} \cdot \mathrm{Z}_{2(\mathrm{oco})}\right)+\left(\mathrm{Z}_{2(\mathrm{oco})} \cdot \mathrm{Z}_{0(\mathrm{oco})}\right)}\right)$
ex $7.791749 \mathrm{~V}=2.13 \mathrm{~A} \cdot\left(\frac{8 \Omega \cdot 7.94 \Omega \cdot 44.6 \Omega}{(8 \Omega \cdot 7.94 \Omega)+(7.94 \Omega \cdot 44.6 \Omega)+(44.6 \Omega \cdot 8 \Omega)}\right)$
9) Negative Sequence Voltage using Negative Sequence Impedance (One Conductor Open)
$f \mathrm{fx} \mathrm{V}_{2(\mathrm{oco})}=-\mathrm{Z}_{2(\mathrm{oco})} \cdot \mathrm{I}_{2(\mathrm{oco})}$
ex $16.056 \mathrm{~V}=-44.6 \Omega \cdot-0.36 \mathrm{~A}$

Positive Sequence

10) Positive Sequence Current using Positive Sequence Voltage (One Conductor Open)
$f \mathbf{f} I_{1(\text { oco })}=\frac{\mathrm{E}_{\mathrm{a}(\text { oco })}-\mathrm{V}_{1(\text { oco })}}{\mathrm{Z}_{1(\mathrm{oco})}}$
Open Calculator
ex $2 \mathrm{~A}=\frac{29.38 \mathrm{~V}-13.5 \mathrm{~V}}{7.94 \Omega}$
11) Positive Sequence Current using Zero Sequence Impedance (One Conductor Open)
$f \mathbf{f x} I_{1(\mathrm{oco})}=\frac{\mathrm{E}_{\mathrm{a}(\mathrm{oco})}}{Z_{1(\mathrm{oco})}+\left(\frac{\mathrm{Z}_{0(\mathrm{oco})} \cdot \mathrm{Z}_{2(\mathrm{oco})}}{\mathrm{Z}_{0(\mathrm{oco})}+\mathrm{Z}_{2(\mathrm{oco})}}\right)}$
Open Calculator
$\mathrm{ex} 1.995481 \mathrm{~A}=\frac{29.38 \mathrm{~V}}{7.94 \Omega+\left(\frac{8 \Omega \cdot 44.6 \Omega}{8 \Omega+44.6 \Omega}\right)}$
12) Positive Sequence Impedance using Positive Sequence Voltage (One Conductor Open)
$f x Z_{1(\mathrm{oco})}=\frac{\mathrm{E}_{\mathrm{a}(\mathrm{oco})}-\mathrm{V}_{1(\mathrm{oco})}}{\mathrm{I}_{1(\mathrm{oco})}}$
ex $7.936032 \Omega=\frac{29.38 \mathrm{~V}-13.5 \mathrm{~V}}{2.001 \mathrm{~A}}$
13) Positive Sequence Potential Difference using A-Phase Potential Difference (One Conductor Open)
$\mathrm{fx}^{\mathrm{Vaa}}{ }_{1(\mathrm{oco})}=\frac{\mathrm{Vaa}^{\prime}{ }_{(\text {oco })}}{3}$
Open Calculator
ex $0.406667 \mathrm{~V}=\frac{1.22 \mathrm{~V}}{3}$
14) Positive Sequence Voltage using Positive Sequence Impedance (One Conductor Open)
$f \mathbf{f} \mathrm{~V}_{1(\text { oco })}=\mathrm{E}_{\mathrm{a}(\text { oco })}-\mathrm{I}_{1(\text { oco })} \cdot \mathrm{Z}_{1 \text { (oco) }}$
ex $13.49206 \mathrm{~V}=29.38 \mathrm{~V}-2.001 \mathrm{~A} \cdot 7.94 \Omega$

Zero Sequence ©

15) Zero Sequence Current (One Conductor Open)
$f x \mathrm{I}_{0(\mathrm{oco})}=\frac{\mathrm{I}_{\mathrm{b}(\mathrm{oco})}+\mathrm{I}_{\mathrm{c}(\mathrm{oco})}}{3}$
Open Calculator
$\mathrm{ex} 2.2 \mathrm{~A}=\frac{2.7 \mathrm{~A}+3.9 \mathrm{~A}}{3}$
16) Zero Sequence Current using Zero Sequence Voltage (One Conductor Open)
$f x \mathrm{I}_{0(\text { oco })}=(-1) \cdot \frac{\mathrm{V}_{0(\text { oco })}}{\mathrm{Z}_{0(\text { oco })}}$
Open Calculator
ex $2.2 \mathrm{~A}=(-1) \cdot \frac{-17.6 \mathrm{~V}}{8 \Omega}$
17) Zero Sequence Impedance using Zero Sequence Voltage (One Conductor Open)
$f \times \mathrm{Z}_{0(\text { oco })}=(-1) \cdot \frac{\mathrm{V}_{0(\text { oco })}}{\mathrm{I}_{0(\text { oco })}}$
ex $8 \Omega=(-1) \cdot \frac{-17.6 \mathrm{~V}}{2.20 \mathrm{~A}}$
18) Zero Sequence Voltage using Zero Sequence Impedance (One Conductor Open)

$\mathrm{fx}_{\mathrm{X}} \mathrm{V}_{0(\text { oco })}=-\mathrm{Z}_{0(\text { oco })} \cdot \mathrm{I}_{0(\text { oco })}$
ex $-17.6 \mathrm{~V}=-8 \Omega \cdot 2.20 \mathrm{~A}$

Three Conductor Open

19) Potential Difference between A-Phase (Three Conductor Open)
$f \mathbf{x} \mathrm{Vaa}^{\prime}{ }_{(\text {thco })}=3 \cdot \mathrm{Vaa}^{\prime}{ }_{(\text {thco })}-\mathrm{Vbb}^{\prime}{ }_{(\text {thco })}-\mathrm{Vcc}^{\prime}{ }_{(\text {thco })}$
ex $5.19 \mathrm{~V}=3 \cdot 3.68 \mathrm{~V}-2.96 \mathrm{~V}-2.89 \mathrm{~V}$
20) Potential Difference between B-Phase (Three Conductor Open)
$\mathrm{fx} \mathrm{Vbb}^{\prime}{ }_{(\text {thco })}=\left(3 \cdot \mathrm{Vaa}^{\prime}{ }_{0(\text { thco })}\right)-\mathrm{Vaa}^{\prime}{ }_{(\text {thco })}-\mathrm{Vcc}^{\prime}{ }_{(\text {thco })}$
ex $2.96 \mathrm{~V}=(3 \cdot 3.68 \mathrm{~V})-5.19 \mathrm{~V}-2.89 \mathrm{~V}$
21) Potential Difference between C-Phase (Three Conductor Open)
fx $\mathrm{Vcc}^{\prime}{ }_{\text {(thco }}=\left(3 \cdot \mathrm{Vaa}^{\prime}{ }_{0(\text { thco })}\right)-\mathrm{Vaa}^{\prime}{ }_{(\text {thco })}-\mathrm{Vbb}^{\prime}{ }_{(\text {thco })}$
ex $2.89 \mathrm{~V}=(3 \cdot 3.68 \mathrm{~V})-5.19 \mathrm{~V}-2.96 \mathrm{~V}$
22) Zero Sequence Potential Differences (Three Conductor Open)
$f \times \mathrm{Vaa}^{\prime}{ }_{\text {(thco) }}=\frac{\mathrm{Vaa}^{\prime}{ }_{\text {(thco }}+\mathrm{Vbb}^{\prime}{ }_{\text {(thco })}+\mathrm{Vcc}^{\prime}{ }_{(\text {thco })}}{3}$
ex $3.68 \mathrm{~V}=\frac{5.19 \mathrm{~V}+2.96 \mathrm{~V}+2.89 \mathrm{~V}}{3}$

Two Conductor Open

23) A-Phase Current (Two Conductor Open)
$\mathrm{fx} \mathrm{I}_{\mathrm{a}(\mathrm{tco})}=\mathrm{I}_{1(\mathrm{tco})}+\mathrm{I}_{2(\mathrm{tco})}+\mathrm{I}_{0(\mathrm{tco})}$
Open Calculator
ex $4.84 \mathrm{~A}=2.01 \mathrm{~A}+0.64 \mathrm{~A}+2.19 \mathrm{~A}$
24) A-Phase EMF using Positive Sequence Current (Two Conductor Open)
$f \mathbf{f} \mathrm{E}_{\mathrm{a}(\mathrm{tco})}=\mathrm{I}_{1(\mathrm{tco})} \cdot\left(\mathrm{Z}_{1(\text { tco })}+\mathrm{Z}_{2(\mathrm{tco})}+\mathrm{Z}_{0(\mathrm{tco})}\right)$
ex $121.4241 \mathrm{~V}=2.01 \mathrm{~A} \cdot(7.95 \Omega+44.5 \Omega+7.96 \Omega)$
25) A-Phase EMF using Positive Sequence Voltage (Two Conductor Open)
$f \mathbf{f x} \mathrm{E}_{\mathrm{a}(\mathrm{tco})}=\mathrm{V}_{1(\mathrm{tco})}+\mathrm{I}_{1(\mathrm{tco})} \cdot \mathrm{Z}_{1(\mathrm{tco})}$
ex $120.9795 \mathrm{~V}=105 \mathrm{~V}+2.01 \mathrm{~A} \cdot 7.95 \Omega$
26) A-Phase Voltage using Sequence Voltages (Two Conductor Open)
$\mathrm{fx} \mathrm{V}_{\mathrm{a}(\mathrm{tco})}=\mathrm{V}_{1(\mathrm{tco})}+\mathrm{V}_{2(\mathrm{tco})}+\mathrm{V}_{0(\mathrm{tco})}$
ex $59.02 \mathrm{~V}=105 \mathrm{~V}+-28.48 \mathrm{~V}+-17.5 \mathrm{~V}$
27) Potential Difference between B-Phase (Two Conductor Open)
$\mathrm{fx} \mathrm{Vbb}^{\prime}{ }_{(\mathrm{tco})}=3 \cdot \mathrm{Vaa}^{\prime}{ }_{0(\mathrm{tco})}-\mathrm{Vcc}^{\prime}{ }_{(\text {tco })}$
Open Calculator
ex $8.1 \mathrm{~V}=3 \cdot 3.66 \mathrm{~V}-2.88 \mathrm{~V}$
28) Potential Difference between C-Phase (Two Conductor Open)
$f \times \mathrm{Vcc}^{\prime}{ }_{(\text {tco })}=\left(3 \cdot \mathrm{Vaa}^{\prime}{ }_{(\text {(tco })}\right)-\mathrm{Vbb}^{\prime}{ }_{\text {(tco) }}$
ex $2.88 \mathrm{~V}=(3 \cdot 3.66 \mathrm{~V})-8.1 \mathrm{~V}$

Negative Sequence

29) Negative Sequence Current using A-Phase Current(Two Conductor Open)
$f \times I_{2(\text { tco })}=\mathrm{I}_{\mathrm{a}(\mathrm{tco})} \cdot\left(\frac{\mathrm{Z}_{1(\text { tco })}}{\mathrm{Z}_{0(\text { tco })}+\mathrm{Z}_{1(\text { tco })}+\mathrm{Z}_{2(\text { tco })}}\right)$
Open Calculator
ex $0.636948 \mathrm{~A}=4.84 \mathrm{~A} \cdot\left(\frac{7.95 \Omega}{7.96 \Omega+7.95 \Omega+44.5 \Omega}\right)$
30) Negative Sequence Current using Negative Sequence Voltage (Two Conductor Open)
$f x I_{2(\mathrm{tco})}=-\frac{V_{2(\mathrm{tco})}}{\mathrm{Z}_{2(\mathrm{tco})}}$
Open Calculator
ex $0.64 \mathrm{~A}=-\frac{-28.48 \mathrm{~V}}{44.5 \Omega}$
31) Negative Sequence Potential Difference (Two Conductor Open)
$\mathrm{fx} \mathrm{Vaa}_{2(\mathrm{tco})}=\left((-1) \cdot \mathrm{Vaa}^{\prime}{ }_{1(\mathrm{tco})}-\mathrm{Vaa}^{\prime}{ }_{0(\mathrm{tco})}\right)$
$\mathbf{e x}-7.11 \mathrm{~V}=((-1) \cdot 3.45 \mathrm{~V}-3.66 \mathrm{~V})$
32) Negative Sequence Voltage using A-Phase Current(Two Conductor Open)
$f \times \mathrm{V}_{2(\mathrm{tco})}=-\mathrm{I}_{\mathrm{a}(\mathrm{tco})} \cdot\left(\frac{\mathrm{Z}_{1(\mathrm{tco})} \cdot \mathrm{Z}_{2(\mathrm{tco})}}{\mathrm{Z}_{0(\mathrm{tco})}+\mathrm{Z}_{1(\mathrm{tco})}+\mathrm{Z}_{2(\mathrm{tco})}}\right)$
Open Calculator ©
ex $-28.344165 \mathrm{~V}=-4.84 \mathrm{~A} \cdot\left(\frac{7.95 \Omega \cdot 44.5 \Omega}{7.96 \Omega+7.95 \Omega+44.5 \Omega}\right)$
33) Negative Sequence Voltage using Negative Sequence Current (Two Conductor Open)
$\mathrm{fx} \mathrm{V}_{2 \text { (tco) }}=-\left(\mathrm{I}_{2(\mathrm{tco})} \cdot \mathrm{Z}_{2(\mathrm{tco})}\right)$
Open Calculator
ex $-28.48 \mathrm{~V}=-(0.64 \mathrm{~A} \cdot 44.5 \Omega)$

Positive Sequence

34) Positive Sequence Current (Two Conductor Open)
$f \times \mathrm{I}_{1(\mathrm{tco})}=\frac{\mathrm{I}_{\mathrm{a}(\mathrm{tco})}}{3}$
ex $1.613333 \mathrm{~A}=\frac{4.84 \mathrm{~A}}{3}$
35) Positive Sequence Current using A-Phase EMF (Two Conductor Open)
$f \mathbf{x} \mathrm{I}_{1 \text { (tco) }}=\frac{\mathrm{E}_{\mathrm{a}(\mathrm{tco})}}{\mathrm{Z}_{0(\mathrm{tco})}+\mathrm{Z}_{1(\text { tco })}+\mathrm{Z}_{2(\text { tco })}}$
ex $2.00927 \mathrm{~A}=\frac{121.38 \mathrm{~V}}{7.96 \Omega+7.95 \Omega+44.5 \Omega}$
36) Positive Sequence Current using Positive Sequence Voltage (Two Conductor Open)
$f \times I_{1(\mathrm{tco})}=\frac{\mathrm{E}_{\mathrm{a}(\mathrm{tco})}-\mathrm{V}_{1(\mathrm{tco})}}{\mathrm{Z}_{1(\mathrm{tco})}}$
ex $2.060377 \mathrm{~A}=\frac{121.38 \mathrm{~V}-105 \mathrm{~V}}{7.95 \Omega}$
37) Positive Sequence Impedance using A-Phase EMF (Two Conductor Open)
$f \mathrm{f} \mathrm{Z}_{1(\mathrm{tco})}=\left(\frac{\mathrm{E}_{\mathrm{a}(\mathrm{tco})}}{\mathrm{I}_{1(\mathrm{tco})}}\right)-\mathrm{Z}_{0(\mathrm{tco})}-\mathrm{Z}_{2(\mathrm{tco})}$
Open Calculator
ex $7.92806 \Omega=\left(\frac{121.38 \mathrm{~V}}{2.01 \mathrm{~A}}\right)-7.96 \Omega-44.5 \Omega$
38) Positive Sequence Impedance using Positive Sequence Voltage (Two Conductor Open)
$\mathrm{fx} \mathrm{Z}_{1(\mathrm{tco})}=\frac{\mathrm{E}_{\mathrm{a}(\mathrm{tco})}-\mathrm{V}_{1(\mathrm{tco})}}{\mathrm{I}_{1(\mathrm{tco})}}$
ex $8.149254 \Omega=\frac{121.38 \mathrm{~V}-105 \mathrm{~V}}{2.01 \mathrm{~A}}$
39) Positive Sequence Potential Difference (Two Conductor Open)
$f \mathbf{f x} \mathrm{Vaa}_{1(\mathrm{tco})}=\left((-1) \cdot \mathrm{Vaa}_{2(\mathrm{tco})}\right)-\mathrm{Vaa}^{\prime}{ }_{0(\mathrm{tco})}$
Open Calculator
ex $3.45 \mathrm{~V}=((-1) \cdot-7.11 \mathrm{~V})-3.66 \mathrm{~V}$
40) Positive Sequence Voltage using Positive Sequence Current (Two Conductor Open)
$f \mathbf{x} \mathrm{~V}_{1(\mathrm{tco})}=\mathrm{E}_{\mathrm{a}(\mathrm{tco})}-\mathrm{I}_{1(\mathrm{tco})} \cdot \mathrm{Z}_{1(\mathrm{tco})}$
ex $105.4005 \mathrm{~V}=121.38 \mathrm{~V}-2.01 \mathrm{~A} \cdot 7.95 \Omega$

Zero Sequence

41) Zero Sequence Current using A-Phase Current(Two Conductor Open)
$\mathrm{fx} \mathrm{I}_{0(\mathrm{tco})}=\mathrm{I}_{\mathrm{a}(\mathrm{tco})} \cdot\left(\frac{\mathrm{Z}_{1 \text { (tco) }}}{\mathrm{Z}_{0(\mathrm{tco})}+\mathrm{Z}_{1 \text { (tco) }}+\mathrm{Z}_{2(\mathrm{tco})}}\right)$
ex $0.636948 \mathrm{~A}=4.84 \mathrm{~A} \cdot\left(\frac{7.95 \Omega}{7.96 \Omega+7.95 \Omega+44.5 \Omega}\right)$
42) Zero Sequence Current using Zero Sequence Voltage (Two Conductor Open)
$f \mathrm{fx} \mathrm{I}_{0(\mathrm{tco})}=(-1) \cdot \frac{\mathrm{V}_{0(\mathrm{tco})}}{\mathrm{Z}_{0(\mathrm{tco})}}$
ex $2.198492 \mathrm{~A}=(-1) \cdot \frac{-17.5 \mathrm{~V}}{7.96 \Omega}$
43) Zero Sequence Impedance using Zero Sequence Voltage (Two Conductor Open)
$f \times \mathrm{Z}_{0(\mathrm{tco})}=(-1) \cdot \frac{\mathrm{V}_{0(\mathrm{tco})}}{\mathrm{I}_{0(\mathrm{tco})}}$
ex $7.990868 \Omega=(-1) \cdot \frac{-17.5 \mathrm{~V}}{2.19 \mathrm{~A}}$
44) Zero Sequence Potential Difference (Two Conductor Open)
$\mathrm{fx} \mathrm{Vaa}_{0(\mathrm{tco})}=\left((-1) \cdot \mathrm{Vaa}_{1(\mathrm{tco})}\right)-\left(\mathrm{Vaa}^{\prime}{ }_{2(\mathrm{tco})}\right)$
ex $3.66 \mathrm{~V}=((-1) \cdot 3.45 \mathrm{~V})-(-7.11 \mathrm{~V})$
45) Zero Sequence Potential Difference using Potential Difference between B-Phase(Two Conductor Open)
$f \times \mathrm{Vaa}^{\prime}{ }_{0(\mathrm{tco})}=\frac{\mathrm{Vbb}^{\prime}{ }_{(\text {tco })}+\mathrm{Vcc}^{\prime}{ }_{(\text {tco })}}{3}$
ex $3.66 \mathrm{~V}=\frac{8.1 \mathrm{~V}+2.88 \mathrm{~V}}{3}$
46) Zero Sequence Voltage using Zero Sequence Current (Two Conductor Open)
$f \mathbf{f x} \mathrm{~V}_{0(\mathrm{tco})}=(-1) \cdot \mathrm{I}_{0(\mathrm{tco})} \cdot \mathrm{Z}_{0(\mathrm{tco})}$
ex $-17.4324 \mathrm{~V}=(-1) \cdot 2.19 \mathrm{~A} \cdot 7.96 \Omega$

Variables Used

- $\mathrm{Ea}_{\mathbf{a}(\mathrm{oco}}$) A Phase EMF in OCO (Volt)
- $\mathbf{E}_{\mathbf{a}(\mathrm{tco})}$ A Phase EMF in TCO (Volt)
- $\mathrm{I}_{\mathbf{0 (o c o)}}$ Zero Sequence Current in OCO (Ampere)
- $\mathbf{I}_{\mathbf{0}(\mathrm{tco})}$ Zero Sequence Current in TCO (Ampere)
- $\mathbf{I}_{1 \text { (oco) }}$ Positive Sequence Current in OCO (Ampere)
- $\mathbf{I}_{1 \text { (tco) }}$ Positive Sequence Current in TCO (Ampere)
- $\mathbf{I}_{\mathbf{2}(o c o)}$ Negative Sequence Current in OCO (Ampere)
- $\mathbf{I}_{\mathbf{2}(\mathrm{tco})}$ Negative Sequence Current in TCO (Ampere)
- $\mathbf{I}_{\mathbf{a}(o c o) \text { A-Phase Current in OCO (Ampere) }}$
- $\mathbf{I}_{\mathbf{a}(t \mathrm{tco})}$ A-Phase Current in TCO (Ampere)
- $\mathbf{I}_{\mathbf{b}(\mathbf{o c o})}$ B Phase Current in OCO (Ampere)
- $\mathrm{I}_{\mathbf{c}(\mathbf{o c o})}$ C Phase Current in OCO (Ampere)
- $\mathrm{V}_{\mathbf{0 (o c o)}}$ Zero Sequence Voltage in OCO (Volt)
- $\mathbf{V}_{0 \text { (tco) }}$ Zero Sequence Voltage in TCO (Volt)
- $\mathbf{V}_{1 \text { (oco) }}$ Positive Sequence Voltage in OCO (Volt)
- $\mathbf{V}_{1 \text { (tco) }}$ Positive Sequence Voltage in TCO (Volt)
- $\mathbf{V}_{2 \text { (oco) }}$ Negative Sequence Voltage in OCO (Volt)
- $\mathbf{V}_{\mathbf{2}(\mathrm{tco})}$ Negative Sequence Voltage in TCO (Volt)
- $\mathrm{V}_{\mathrm{a}(\mathrm{oco})}$ A Phase Voltage in OCO (Volt)
- $\mathbf{V}_{\mathrm{a}(\mathrm{tco})}$ A Phase Voltage in TCO (Volt)
- Vaa' ${ }_{(0 c o)}$ Potential Difference Between A Phase in OCO (Volt)
- Vaa' ${ }^{(t h c o)}{ }^{\text {Potential Difference Between A Phase in THCO (Volt) }}$
- $\mathrm{Vaa}^{\mathbf{0}(\mathrm{oco})}$ Zero Sequence Potential Difference in OCO (Volt)
- Vaa'o(tco) Zero Sequence Potential Difference in TCO (Volt)
- Vaa'0(thco) Zero Sequence Potential Difference in THCO (Volt)
- Vaa' ${ }_{1 \text { (oco) }}$ Positive Sequence Potential Difference in OCO (Volt)
- Vaa' ${ }_{1}$ (tco) Positive Sequence Potential Difference in TCO (Volt)
- $\mathrm{Vaa}^{\mathbf{2}(o c o)}$) Negative Sequence Potential Difference in OCO (Volt)
- Vaa' ${ }_{2(t c o)}$ Negative Sequence Potential Difference in TCO (Volt)
- Vbb' (tco) Potential Difference between B Phase in TCO (Volt)
- Vbb' (thco) Potential Difference between B Phase in THCO (Volt)
- $\mathbf{V c c}^{\prime}{ }_{(t c o)}$ Potential Difference between C Phase in TCO (Volt)
- Vcc' ${ }^{\prime}$ thco) Potential Difference between C Phase in THCO (Volt)
- $\mathbf{Z}_{\mathbf{0 (o c o)}}$ Zero Sequence Impedance in OCO (Ohm)
- $\mathbf{Z}_{\mathbf{0 (t c o)}}$ Zero Sequence Impedance in TCO (Ohm)
- $\mathbf{Z}_{1 \text { (oco) }}$ Positive Sequence Impedance in OCO (Ohm)
- $\mathbf{Z}_{1 \text { (tco) }}$ Positive Sequence Impedance in TCO (Ohm)
- $\mathbf{Z}_{\mathbf{2}}$ (oco) Negative Sequence Impedance in OCO (Ohm)
- $\mathbf{Z}_{\mathbf{2}(\mathrm{tco})}$ Negative Sequence Impedance in TCO (Ohm)

Constants, Functions, Measurements used

- Measurement: Electric Current in Ampere (A) Electric Current Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω) Electric Resistance Unit Conversion E
- Measurement: Electric Potential in Volt (V) Electric Potential Unit Conversion

Check other formula lists

- Open Conductor Fault Formulas $\sqrt{ }$
- Symmetric Components Formulas \mathcal{G}
- Shunt Faults Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

