

Electrostatics Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Electrostatics Formulas

Electrostatics

1) Electric Current given Drift Velocity

 $I = n \cdot [Charge-e] \cdot A \cdot V_d$

Open Calculator

ex $1.6\mathrm{E^-27A} = 7\cdot[\mathrm{Charge-e}]\cdot14\mathrm{mm^2}\cdot0.1\mathrm{mm/s}$

2) Electric Dipole Moment

fx $p = Q \cdot d$

Open Calculator

 $\texttt{ex} \ 0.6 \text{C*m} = 0.3 \text{C} \cdot 2 \text{m}$

3) Electric Field

 $\mathbb{E} = rac{\Delta V}{l}$

 \mathbf{ex} $20\mathrm{V/m} = rac{18\mathrm{V}}{0.9\mathrm{m}}$

Open Calculator 🚰

4) Electric Field between Two Oppositely Charged Parallel Plates

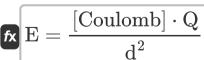
$$\mathbf{E} = \frac{\mathbf{\sigma}}{[\text{Permitivity-vacuum}]}$$

= 2.8E 11 V/m = $\frac{2.5$ C/m $^2}{[Permitivity-vacuum]}$

5) Electric Field due to Infinite Sheet

$$\mathbf{E} = \frac{\sigma}{2 \cdot [\text{Permitivity-vacuum}]}$$

Open Calculator


= 1.4E 1 1V/m = $\frac{2.5 \mathrm{C/m^2}}{2 \cdot \mathrm{[Permitivity-vacuum]}}$ 6) Electric Field due to Line Charge

$$\mathbf{E} = rac{2 \cdot [ext{Coulomb}] \cdot \lambda}{ ext{r}_{ ext{ring}}}$$

Open Calculator

 $\mathbf{ex} = 2.2 \mathrm{E^10V/m} = \frac{2 \cdot \mathrm{[Coulomb] \cdot 6C/m}}{2.2 \mathrm{E^10V/m}}$ 5m

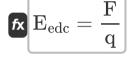
7) Electric Field due to Point Charge

Open Calculator

 $= \frac{6.7 \text{E}^8 \text{V/m} = \frac{[\text{Coulomb}] \cdot 0.3 \text{C}}{(2\text{m})^2} }{}$

Open Calculator

Open Calculator G


8) Electric Field for Uniformly Charged Ring 🚰

 $\mathrm{E} = rac{\left[\mathrm{Coulomb}
ight]\cdot\mathrm{Q}\cdot\mathrm{x}}{\left(\mathrm{r_{ring}^2}+\mathrm{x}^2
ight)^{rac{3}{2}}}$

Open Calculator

 $2.6 \text{E}^7 \text{V/m} = \frac{ \left[\text{Coulomb} \right] \cdot 0.3 \text{C} \cdot 8 \text{m} }{ \left(\left(5 \text{m} \right)^2 + \left(8 \text{m} \right)^2 \right)^{\frac{3}{2}} }$

9) Electric Field Intensity

= $3.428571 \mathrm{V/m} = rac{2.4 \mathrm{N}}{0.7 \mathrm{C}}$

10) Electric Force by Coulomb's Law

$$\mathbf{F}_{\mathrm{ele}} = rac{[\mathrm{Coulomb}] \cdot \mathrm{q}_1 \cdot \mathrm{q}_2}{\mathrm{d}^2}$$

 $extbf{ex} 2.7 ext{E^10N} = rac{ ext{[Coulomb]} \cdot 4 ext{C} \cdot 3 ext{C}}{ ext{(2m)}^2}$

11) Electric Potential of Dipole

 $extbf{K} V = rac{[ext{Coulomb}] \cdot ext{p} \cdot ext{cos}(heta)}{ ext{r}^2}$

Open Calculator

 $= \frac{0.128003V = \frac{[Coulomb] \cdot 12C*m \cdot \cos(90°)}{(0.5m)^2}$

12) Electrostatic Potential due to Point Charge

 $V = \frac{[Coulomb] \cdot Q}{d}$

Open Calculator

 $= 1.3E^9V = \frac{[Coulomb] \cdot 0.3C}{2m}$

13) Electrostatic Potential Energy of Point Charge or System of Charges

 $extbf{U}_{
m e} = rac{[{
m Coulomb}] \cdot {
m q}_1 \cdot {
m q}_2}{{
m d}}$

Open Calculator

 $extbf{ex} = \frac{ ext{[Coulomb]} \cdot 4 ext{C} \cdot 3 ext{C}}{2 ext{m}}$

Variables Used

- A Cross-Sectional Area (Square Millimeter)
- **d** Separation between Charges (Meter)
- **E** Electric Field (Volt per Meter)
- **E**_{edc} Electric Field Intensity (Volt per Meter)
- **F** Electric Force (Newton)
- Fele Electric Force (Newton)
- I Electric Current (Ampere)
- I Length of Conductor (Meter)
- n Number of Free Charge Particles per Unit Volume
- p Electric Dipole Moment (Coulomb Meter)
- **q** Electric Charge (Coulomb)
- Q Charge (Coulomb)
- q₁ Charge 1 (Coulomb)
- q₂ Charge 2 (Coulomb)
- r Magnitude of Position Vector (Meter)
- r_{ring} Radius of Ring (Meter)
- **U**_e Electrostatic Potential Energy (*Joule*)
- V Electrostatic Potential (Volt)
- **V**_d Drift Speed (Millimeter per Second)
- X Distance (Meter)
- ΔV Electric Potential Difference (Volt)
- **θ** Angle between any two vectors *(Degree)*
- λ Linear Charge Density (Coulomb per Meter)

• σ Surface Charge Density (Coulomb per Square Meter)

Constants, Functions, Measurements used

- Constant: [Charge-e], 1.60217662E-19 Coulomb Charge of electron
- Constant: [Coulomb], 8.9875517923E9 Newton * Meter ^2 / Coulomb ^2
 Coulomb constant
- Constant: [Permitivity-vacuum], 8.85E-12 Farad / Meter Permittivity of vacuum
- Function: cos, cos(Angle)
 Trigonometric cosine function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Electric Current in Ampere (A)
 Electric Current Unit Conversion
- Measurement: Area in Square Millimeter (mm²)
 Area Unit Conversion
- Measurement: Speed in Millimeter per Second (mm/s)
 Speed Unit Conversion
- Measurement: Energy in Joule (J)
 Energy Unit Conversion
- Measurement: Electric Charge in Coulomb (C)

 Electric Charge Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Linear Charge Density in Coulomb per Meter (C/m)
 Linear Charge Density Unit Conversion

- Measurement: Surface Charge Density in Coulomb per Square Meter (C/m²)
 - Surface Charge Density Unit Conversion
- Measurement: Electric Field Strength in Volt per Meter (V/m)

 Electric Field Strength Unit Conversion
- Measurement: Electric Potential in Volt (V)

 Electric Potential Unit Conversion
- Measurement: Electric Dipole Moment in Coulomb Meter (C*m)
 Electric Dipole Moment Unit Conversion

Check other formula lists

- Capacitor Formulas
- Electromagnetic Induction Formulas
- Electrostatics Formulas
- Magnetic Field due to Current Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

12/11/2023 | 9:21:16 AM UTC

Please leave your feedback here...

