
calculatoratoz.com

unitsconverters.com

Capacitor Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Capacitor Formulas

Capacitor ©

Capacitance

1) Capacitance
$\mathrm{fx} \mathrm{C}=\mathrm{K} \cdot \frac{\mathrm{q}}{\mathrm{V}}$
Open Calculator
ex $0.01125 \mathrm{~F}=4.5 \cdot \frac{0.3 \mathrm{C}}{120 \mathrm{~V}}$
2) Capacitance for Parallel Plate Capacitors with Dielectric between them $\boxed{\square}$
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}=\frac{\varepsilon \cdot \mathrm{K} \cdot \mathrm{A}_{\text {plate }}}{\mathrm{d}}$
Open Calculator
ex $0.036 \mathrm{~F}=\frac{5 \cdot 4.5 \cdot 400 \mathrm{~mm}^{2}}{250 \mathrm{~mm}}$
3) Capacitance of Cylindrical Capacitor
$\mathrm{fx} \mathrm{C}=\frac{\mathrm{K} \cdot \mathrm{l}}{2 \cdot[\text { Coulomb }] \cdot\left(\mathrm{r}_{2}-\mathrm{r}_{1}\right)}$
Open Calculator
ex $3.2 \mathrm{E}^{\wedge}-16 \mathrm{~F}=\frac{4.5 \cdot 0.006 \mathrm{~mm}}{2 \cdot[\text { Coulomb }] \cdot(7500 \mathrm{~mm}-2750 \mathrm{~mm})}$
© calculatoratoz.com. A softusvista inc. venture!
4) Capacitance of Parallel Plate Capacitor
$f_{x} \mathrm{C}_{\|}=\frac{\mathrm{K} \cdot[\text { Permitivity-vacuum }] \cdot \mathrm{A}_{\text {plate }}}{\mathrm{r}}$
ex $1.3 \mathrm{E}^{\wedge}-14 \mathrm{~F}=\frac{4.5 \cdot[\text { Permitivity-vacuum }] \cdot 400 \mathrm{~mm}^{2}}{1200 \mathrm{~mm}}$
5) Capacitance of Spherical Capacitor
$\mathrm{fx} \mathrm{C}=\frac{\mathrm{K} \cdot \mathrm{R}_{\mathrm{s}} \cdot \mathrm{a}_{\text {shell }}}{[\text { Coulomb }] \cdot\left(\mathrm{a}_{\text {shell }}-\mathrm{R}_{\mathrm{s}}\right)}$
Open Calculator
$4.5 \cdot 1300 \mathrm{~mm} \cdot 1600 \mathrm{~mm}$
ex $3.5 \mathrm{E}^{\wedge}-9 \mathrm{~F}=\overline{[\text { Coulomb }] \cdot(1600 \mathrm{~mm}-1300 \mathrm{~mm})}$
6) Capacitor with Dielectric
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}=\frac{\varepsilon \cdot \mathrm{a} \cdot \mathrm{A}_{\text {plate }}}{\mathrm{d}}$
Open Calculator
ex $0.0192 \mathrm{~F}=\frac{5 \cdot 2.4 \cdot 400 \mathrm{~mm}^{2}}{250 \mathrm{~mm}}$

Current Density ©

7) Current Density given Conductivity

$f \mathbf{f x}=\sigma \cdot \mathrm{E}$
ex $6 \mathrm{E}^{\wedge}-5 \mathrm{~A} / \mathrm{mm}^{2}=0.1 \mathrm{~S} / \mathrm{m} \cdot 600 \mathrm{~V} / \mathrm{m}$
8) Current Density given Electric Current and Area

9) Current Density given Resistivity

$f \mathrm{x}=\mathrm{J}=\frac{\mathrm{E}}{\mathrm{p}}$ ρ
ex $35.29412 \mathrm{~A} / \mathrm{mm}^{2}=\frac{600 \mathrm{~V} / \mathrm{m}}{0.017 \Omega^{*} \mathrm{~mm}}$

Energy Density and Energy Stored
10) Energy Density given Electric Field
$1 \quad$ Open Calculator
$\mathrm{fx} \mathrm{U}=\frac{1}{2 \cdot \varepsilon \cdot \mathrm{E}^{2}}$
Open Calculator

$$
\mathrm{ex} 0.402299 \mathrm{~A} / \mathrm{mm}^{2}=\frac{2.1 \mathrm{~A}}{5.22 \mathrm{~mm}^{2}}
$$

11) Energy Density in Electric Field
$f_{x} U=\frac{1}{2} \cdot[$ Permitivity-vacuum $] \cdot E^{2}$
Open Calculator
ex $1.6 \mathrm{E}^{\wedge}-6 \mathrm{~J}=\frac{1}{2} \cdot[$ Permitivity-vacuum $] \cdot(600 \mathrm{~V} / \mathrm{m})^{2}$
12) Energy Density in Electric Field given Free Space Permittivity
$\mathrm{fx} \mathrm{U}=\frac{1}{2 \cdot \varepsilon \cdot \mathrm{E}^{2}}$
Open Calculator
ex $2.8 \mathrm{E}^{\wedge}-7 \mathrm{~J}=\frac{1}{2 \cdot 5 \cdot(600 \mathrm{~V} / \mathrm{m})^{2}}$
13) Energy Stored in Capacitor given Capacitance and Voltage
$f \mathrm{x} \mathrm{U}_{\mathrm{e}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}^{2}$
Open Calculator
ex $28800 \mathrm{~J}=\frac{1}{2} \cdot 4 \mathrm{~F} \cdot(120 \mathrm{~V})^{2}$
14) Energy Stored in Capacitor given Charge and Capacitance
$f \mathrm{f} \mathrm{U}_{\mathrm{e}}=\frac{\mathrm{q}^{2}}{2 \cdot \mathrm{C}}$
Open Calculator
$\operatorname{ex} 0.01125 \mathrm{~J}=\frac{(0.3 \mathrm{C})^{2}}{2 \cdot 4 \mathrm{~F}}$
15) Energy Stored in Capacitor given Charge and Voltage
$f_{\mathrm{x}} \mathrm{U}_{\mathrm{e}}=\frac{1}{2} \cdot \mathrm{q} \cdot \mathrm{V}$
$\mathrm{ex} 18 \mathrm{~J}=\frac{1}{2} \cdot 0.3 \mathrm{C} \cdot 120 \mathrm{~V}$
16) Force between Parallel Plate Capacitors $\boxed{\Omega}$
$\mathrm{fx} \mathrm{F}=\frac{\mathrm{q}^{2}}{2 \cdot \mathrm{C}_{\|} \cdot \mathrm{r}}$
Open Calculator
ex $0.075 \mathrm{~N}=\frac{(0.3 \mathrm{C})^{2}}{2 \cdot 0.5 \mathrm{~F} \cdot 1200 \mathrm{~mm}}$

Equivalent Capacitance ©

17) Equivalent Capacitance for Two Capacitors in Parallel
$f \mathrm{f} \quad \mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$
Open Calculator
ex $9 \mathrm{~F}=6 \mathrm{~F}+3 \mathrm{~F}$
18) Equivalent Capacitance for Two Capacitors in Series
$f \mathrm{x}=\frac{\mathrm{C}_{1} \cdot \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
Open Calculator
$e x 2 F=\frac{6 F \cdot 3 F}{6 F+3 F}$
19) Equivalent Resistance in Series
$f \times R_{\text {eq }}=R+\Omega$
ex $65 \Omega=15 \Omega+50 \Omega$

Variables Used

- a Constant a
- $\mathbf{A}_{\text {cond }}$ Area of Conductor (Square Millimeter)
- Aplate Area of Plates (Square Millimeter)
- $\mathbf{a}_{\text {shell }}$ Radius of Shell (Millimeter)
- C Capacitance (Farad)
- Cl| $_{\|}$Parallel Plate Capacitance (Farad)
- \mathbf{C}_{1} Capacitance of Capacitor 1 (Farad)
- \mathbf{C}_{2} Capacitance of Capacitor 2 (Farad)
- d Distance between Deflecting Plates (Millimeter)
- E Electric Field (Volt per Meter)
- E Electric Field (Volt per Meter)
- F Force (Newton)
- I Electric Current (Ampere)
- J Electric Current Density (Ampere per Square Millimeter)
- K Dielectric Constant
- I Length of Cylinder (Millimeter)
- q Charge (Coulomb)
- \mathbf{r} Distance between Two Masses (Millimeter)
- R Resistance (Ohm)
- $\mathbf{r}_{\mathbf{1}}$ Inner Radius of Cylinder (Millimeter)
- $\mathbf{r}_{\mathbf{2}}$ Outer Radius of Cylinder (Millimeter)
- $\mathbf{R}_{\text {eq }}$ Equivalent Resistance (Ohm)
- $\mathbf{R}_{\mathbf{s}}$ Radius of Sphere (Millimeter)
- U Energy Density (Joule)
- $\mathbf{U}_{\mathbf{e}}$ Electrostatic Potential Energy (Joule)
- V Voltage (Volt)
- ε Permittivity
- ρ Resistivity (Ohm Millimeter)
- $\boldsymbol{\sigma}$ Conductivity (Siemens per Meter)
- $\boldsymbol{\Omega}$ Final Resistance (Ohm)

Constants, Functions, Measurements used

- Constant: [Coulomb], 8.9875517923E9 Newton *Meter ^2 / Coulomb ^2 Coulomb constant
- Constant: [Permitivity-vacuum], 8.85E-12 Farad / Meter Permittivity of vacuum
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

- Measurement: Area in Square Millimeter (mm²) Area Unit Conversion
- Measurement: Energy in Joule (J)

Energy Unit Conversion

- Measurement: Electric Charge in Coulomb (C)

Electric Charge Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Capacitance in Farad (F)

Capacitance Unit Conversion

- Measurement: Electric Resistance in Ohm (Ω)

Electric Resistance Unit Conversion

- Measurement: Surface Current Density in Ampere per Square Millimeter ($\mathrm{A} / \mathrm{mm}^{2}$)
Surface Current Density Unit Conversion
- Measurement: Electric Field Strength in Volt per Meter (V/m) Electric Field Strength Unit Conversion
- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

- Measurement: Electric Resistivity in Ohm Millimeter ($\Omega^{*} \mathrm{~mm}$)

Electric Resistivity Unit Conversion

- Measurement: Electric Conductivity in Siemens per Meter (S/m) Electric Conductivity Unit Conversion

Check other formula lists

- Capacitor Formulas
- Electromagnetic Induction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

