

Braking Torque Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Braking Torque Formulas

Braking Torque

1) Braking Torque for Band and Block Brake, Considering Thickness of Band

fx $M_{
m t} = (T_1 - T_2) \cdot r_{
m e}$

Open Calculator

2) Braking Torque for Band and Block Brake, Neglecting Thickness of Band

fx $M_{
m t} = (T_1 - T_2) \cdot r_{
m d}$

Open Calculator

 $(720N - 500N) \cdot 0.16m$

3) Braking Torque for Double Block or Shoe Brake

fx $M_{\mathrm{t}} = (F_{\mathrm{t1}} + F_{\mathrm{t2}}) \cdot r_{\mathrm{w}}$

Open Calculator

 $\mathbf{ex} \ 37.8 \mathrm{N^*m} = (8 \mathrm{N} + 12 \mathrm{N}) \cdot 1.89 \mathrm{m}$

4) Braking Torque for Pivoted Block or Shoe Brake

fx $M_t = \mu^{'} \cdot R_n \cdot r_w$

Open Calculator

 $[a] 4.536N*m = 0.4 \cdot 6N \cdot 1.89m$

5) Braking Torque for Shoe Brake

fx $M_{
m t} = F_{
m t} \cdot r_{
m w}$

Open Calculator 🗗

- $28.35 \text{N*m} = 15 \text{N} \cdot 1.89 \text{m}$
- 6) Braking Torque for Shoe Brake given Force Applied at End of Lever
- $\mathbf{M}_{\mathrm{t}} = rac{\mu_{\mathrm{b}} \cdot P \cdot l \cdot r_{\mathrm{w}}}{x}$

Open Calculator

- 7) Braking Torque for Shoe Brake if Line of Action of Tangential Force Passes above Fulcrum Anti Clock
- $\mathbf{M}_{\mathrm{t}} = rac{\mu_{\mathrm{b}} \cdot \mathrm{r_{\mathrm{w}}} \cdot \mathrm{P} \cdot \mathrm{l}}{\mathrm{x} + \mu_{\mathrm{b}} \cdot \mathrm{a_{\mathrm{s}}}}$

Open Calculator 🗗

- $= 1.870265 N^*m = \frac{0.35 \cdot 1.89 m \cdot 16 N \cdot 1.1 m}{5m + 0.35 \cdot 3.5 m}$
- 8) Braking Torque of Shoe Brake if Line of Action of Tangential Force Passes above Fulcrum Clockwise
- $\mathbf{M}_{\mathrm{t}} = rac{\mu_{\mathrm{b}} \cdot \mathbf{r}_{\mathrm{w}} \cdot \mathbf{P} \cdot \mathbf{l}}{\mathbf{x} \mu_{\mathrm{b}} \cdot \mathbf{a}_{\mathrm{s}}}$

Open Calculator 🗗

$$= 3.084079 \text{N*m} = \frac{0.35 \cdot 1.89 \text{m} \cdot 16 \text{N} \cdot 1.1 \text{m}}{5 \text{m} - 0.35 \cdot 3.5 \text{m}}$$

9) Braking Torque of Shoe Brake if Line of Action of Tangential Force Passes below Fulcrum Anti Clock

 $\mathbf{M}_{\mathrm{t}} = rac{\mu_{\mathrm{b}} \cdot r_{\mathrm{w}} \cdot P \cdot l}{x - \mu_{\mathrm{b}} \cdot a_{\mathrm{s}}}$

Open Calculator 🗗

10) Braking Torque of Shoe Brake if Line of Action of Tangential Force Passes below Fulcrum Clockwise

 $\mathbf{M}_{\mathrm{t}} = rac{\mu_{\mathrm{b}} \cdot \mathbf{r}_{\mathrm{w}} \cdot \mathbf{P} \cdot \mathbf{l}}{\mathbf{x} + \mu_{\mathrm{b}} \cdot \mathbf{a}_{\mathrm{s}}}$

Open Calculator

 $= 1.870265 N*m = \frac{0.35 \cdot 1.89 m \cdot 16 N \cdot 1.1 m}{5m + 0.35 \cdot 3.5 m}$

11) Braking Torque on Drum for Simple Band Brake Considering Band Thickness

fx $M_{
m t} = ({
m T}_1 - {
m T}_2) \cdot {
m r}_{
m e}$

Open Calculator 🗗

12) Braking Torque on Drum for Simple Band Brake, Neglecting Thickness of Band

 $M_{
m t} = ({
m T}_1 - {
m T}_2) \cdot {
m r}_{
m d}$

Open Calculator

 $\textbf{ex} \ 35.2 \text{N*m} = (720 \text{N} - 500 \text{N}) \cdot 0.16 \text{m}$

Variables Used

- µ Equivalent Coefficient of Friction
- a_s Shift in Line of Action of Tangential Force (Meter)
- **F**_t Tangential Braking Force (Newton)
- F₁₁ Braking Forces on The Block 1 (Newton)
- F₁₂ Braking Forces on The Block 2 (Newton)
- I Distance Between Fulcrum And End of Lever (Meter)
- M_t Braking or Fixing Torque on Fixed Member (Newton Meter)
- P Force Applied at The End of The Lever (Newton)
- r_d Radius of The Drum (Meter)
- re Effective Radius of The Drum (Meter)
- R_n Normal Force Pressing The Brake Block on The Wheel (Newton)
- r_w Radius of Wheel (Meter)
- T₁ Tension in Tight Side of The Band (Newton)
- T₂ Tension in The Slack Side of Band (Newton)
- X Distance Between Fulcrum And Axis of Wheel (Meter)
- µ_b Coefficient of Friction For Brake

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)

 Length Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Torque in Newton Meter (N*m)
 Torque Unit Conversion

Check other formula lists

- Braking Torque Formulas
- Dynamometer Formulas
- Force Formulas

- Retardation of the Vehicle Formulas
- Total Normal Reaction
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/18/2024 | 9:42:59 AM UTC

Please leave your feedback here...

