

Wave Optics Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Wave Optics Formulas

Wave Optics 🕑

Intensity and Interference of Light Waves 🕑

1) Angular Width of Central Maxima 🕑

fx
$$d_{angular} = \frac{2 \cdot \lambda}{a}$$

ex $6.00989^{\circ} = \frac{2 \cdot 26.8 \text{cm}}{5.11}$

2) Intensity of Constructive Interference

fx
$$egin{array}{c} I_{\mathrm{C}} = \left(\sqrt{\mathrm{I}_{1}} + \sqrt{\mathrm{I}_{2}}
ight)^{2}$$

$$\mathbf{x} \begin{bmatrix} 52.45584 \text{cd} = \left(\sqrt{9 \text{cd}} + \sqrt{18 \text{cd}}\right)^2 \end{bmatrix}$$

3) Intensity of Destructive Interference

fx
$$I_{\mathrm{D}} = \left(\sqrt{\mathrm{I_1}} - \sqrt{\mathrm{I_2}}
ight)^2$$

$$\begin{array}{l} \begin{array}{c} \begin{array}{c} \\ \end{array} \mathbf{x} \end{array} 1.544156 \mathrm{cd} = \left(\sqrt{9\mathrm{cd}} - \sqrt{18\mathrm{cd}} \right)^2 \end{array} \end{array}$$

4) Interference of Waves of Two Intensities 🕑

fx
$$\mathbf{I} = \mathrm{I}_1 + \mathrm{I}_2 + 2 \cdot \sqrt{\mathrm{I}_1 \cdot \mathrm{I}_2} \cdot \cos(\Phi)$$

$$\texttt{ex} \hspace{0.1cm} 46.92195 \text{cd} = 9 \text{cd} + 18 \text{cd} + 2 \cdot \sqrt{9 \text{cd} \cdot 18 \text{cd}} \cdot \cos(38.5^{\circ})$$

5) Malus Law 🗹

$$\mathbf{x} \left[\mathrm{I_{T}} = \mathrm{I_{1}} \cdot \left(\cos(heta)
ight)^{2}
ight]$$

$$\texttt{ex} \; 8.340979 \text{cd} = 9 \text{cd} \cdot \left(\cos(15.7^{\circ}) \right)^2$$

Open Calculator

Open Calculator 🕑

Open Calculator 🖸

Open Calculator

Thin Film Interference and Optical Path Difference 🗹

17) Thin-Film Destructive Interference in Reflected Light

fx
$$I_d = n \cdot \lambda$$
 Open Calculator C

$$\begin{array}{c|c} \textbf{ex} & 1.34 = 5 \cdot 26.8 \text{cm} \end{array}$$

18) Thin-Film Destructive Interference in Transmitted Light 🕑

fx
$$\mathbf{I}_{\mathrm{d}}=\left(\mathrm{n}+rac{1}{2}
ight)\cdot\lambda$$
 ex $1.474=\left(5+rac{1}{2}
ight)\cdot26.8\mathrm{cm}$

Young's Double Slit Experiment (YDSE)

19) Distance from Center to Light Source for Constructive Interference in YDSE 🕑

$$\begin{aligned} & \mathbf{fx} \quad \mathbf{y}_{\mathrm{CI}} = \left(\mathbf{n} + \left(\frac{1}{2} \right) \right) \cdot \frac{\lambda \cdot \mathbf{D}}{\mathbf{d}} \\ & \mathbf{ex} \quad 280.8943 \mathrm{cm} = \left(5 + \left(\frac{1}{2} \right) \right) \cdot \frac{26.8 \mathrm{cm} \cdot 20.2 \mathrm{cm}}{10.6 \mathrm{cm}} \end{aligned}$$

20) Distance from Center to Light Source for Destructive Interference in YDSE C

$$\begin{array}{l} \textbf{(p)} \textbf{(p)} \textbf{(p)} = (2 \cdot n - 1) \cdot \frac{\lambda \cdot D}{2 \cdot d} \\ \textbf{(p)} \textbf{$$

ex
$$51.0717$$
cm = $\frac{26.8$ cm $\cdot 20.2$ cm}{10.6cm

C

Open Calculator

Open Calculator

22) Path Difference for Constructive Interference in YDSE

$$\sum_{\mathbf{A}} \Delta \mathbf{x}_{CI} = \frac{\mathbf{y}_{CI} \cdot \mathbf{d}}{\mathbf{D}}$$

$$\sum_{\mathbf{A}} \frac{147.3505 \text{cm} = \frac{280.8 \text{cm} \cdot 10.6 \text{cm}}{20.2 \text{cm}}}{20.2 \text{cm}}$$

$$\sum_{\mathbf{A}} \frac{147.3505 \text{cm} = \frac{280.8 \text{cm} \cdot 10.6 \text{cm}}{20.2 \text{cm}}}{20.2 \text{cm}}$$

$$\sum_{\mathbf{A}} \frac{147.3505 \text{cm} = (2 \cdot n - 1) \cdot \left(\frac{\lambda}{2}\right)}{2}$$

$$\sum_{\mathbf{A}} \frac{120.6 \text{cm} = (2 \cdot 5 - 1) \cdot \left(\frac{26.8 \text{cm}}{2}\right)}{2}$$

$$\sum_{\mathbf{A}} \frac{120.6 \text{cm} = (2 \cdot 5 - 1) \cdot \left(\frac{26.8 \text{cm}}{2}\right)}{2}$$

$$\sum_{\mathbf{A}} \frac{120.6 \text{cm} = (2 \cdot 5 - 1) \cdot \left(\frac{26.8 \text{cm}}{2}\right)}{2}$$

$$\sum_{\mathbf{A}} \frac{134 \text{cm} = 5 \cdot 26.8 \text{cm}}{2}$$

$$\sum_{\mathbf{A}} \frac{134 \text{cm} = 5 \cdot 26.8 \text{cm}}{2}$$

$$\sum_{\mathbf{A}} \frac{147.4 \text{cm} = (2 \cdot n + 1) \cdot \frac{\lambda}{2}}{2}$$

$$\sum_{\mathbf{A}} \frac{147.4 \text{cm} = (2 \cdot 5 + 1) \cdot \frac{26.8 \text{cm}}{2} }{26.9 \text{ Path Difference in YDSE given Distance between Coherent Sources }$$

$$\sum_{\mathbf{A}} \frac{147.4 \text{cm} = (2 \cdot 5 + 1) \cdot \frac{26.8 \text{cm}}{2} }{2.868365 \text{cm} = 10.6 \text{cm} \cdot \sin(15.7^{\circ})}$$

27) Path Difference in Young's Double-Slit Experiment

$$\Delta \mathbf{x} = \sqrt{\left(\mathbf{y} + \frac{d}{2}\right)^2 + D^2} - \sqrt{\left(\mathbf{y} - \frac{d}{2}\right)^2 + D^2}$$

ex
$$2.866408 \text{cm} = \sqrt{\left(5.852 \text{cm} + \frac{10.6 \text{cm}}{2}\right)^2 + (20.2 \text{cm})^2} - \sqrt{\left(5.852 \text{cm} - \frac{10.6 \text{cm}}{2}\right)^2 + (20.2 \text{cm})^2}$$

Variables Used

- a Aperture of Objective
- Cx Concentration at x Distance
- d Distance between Two Coherent Sources (Centimeter)
- D Distance between Slits and Screen (Centimeter)
- dangular Angular Width (Degree)
- | Resultant Intensity (Candela)
- I₁ Intensity 1 (Candela)
- I2 Intensity 2 (Candela)
- Ic Constructive Interference
- Ic Resultant Intensity of Constructive (Candela)
- Id Destructive Interference
- ID Resultant Intensity of Destructive (Candela)
- IIS Resultant Intensity of Incoherent Sources (Candela)
- IS1 Intensity from Slit 1 (Candela)
- IT Transmitted Intensity (Candela)
- L Length (Centimeter)
- n Integer
- RI Refractive Index
- t Thickness (Centimeter)
- y Distance from Center to Light Source (Centimeter)
- **Y**CI Distance from Center to Light Source for C I (Centimeter)
- y_{DI} Distance from Center to Light Source for D I (Centimeter)
- α Optical Activity
- β Fringe Width (Centimeter)
- A Optical Path Difference
- Δx Path Difference (Centimeter)
- Δx_{CI} Path Difference for Constructive Interference (Centimeter)
- Δx_{DI} Path Difference for Destructive Interference (Centimeter)
- Δxmax Path Difference for Maxima (Centimeter)
- Δxmin Path Difference for Minima (Centimeter)

- **θ** Angle from Slit Center to Light Source (*Degree*)
- **λ** Wavelength (Centimeter)
- **Φ** Phase Difference (Degree)
- **Φ**_{ci} Phase Difference of Constructive Interference (Degree)
- **Φ**_{di} Phase Difference of Destructive Interference (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Centimeter (cm) Length Unit Conversion
- Measurement: Luminous Intensity in Candela (cd) Luminous Intensity Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion

Check other formula lists

Wave Optics Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/26/2024 | 7:32:58 AM UTC

Please leave your feedback here...

