
calculatoratoz.com

unitsconverters.com

Magnetic Field due to Current Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Magnetic Field due to Current Formulas

Magnetic Field due to Current ©

1) Angle of Dip
$f \mathrm{fx} \delta=\arccos \left(\frac{\mathrm{B}_{\mathrm{H}}}{\mathrm{B}_{\mathrm{net}}}\right)$
Open Calculator
ex $60^{\circ}=\arccos \left(\frac{0.00002 \mathrm{~Wb} / \mathrm{m}^{2}}{0.00004 \mathrm{~Wb} / \mathrm{m}^{2}}\right)$
2) Current in Moving Coil Galvanometer
$\mathrm{fx}_{\mathrm{x}} \mathrm{i}=\frac{\mathrm{K}_{\text {spring }} \cdot \theta_{\mathrm{G}}}{\mathrm{n} \cdot \mathrm{A} \cdot \mathrm{B}}$
ex $0.009226 \mathrm{~A}=\frac{51 \mathrm{~N} / \mathrm{m} \cdot 32^{\circ}}{95 \cdot 13 \mathrm{~m}^{2} \cdot 2.5 \mathrm{~Wb} / \mathrm{m}^{2}}$
3) Electric Current for Tangent Galvanometer
$\mathrm{ff}_{\mathrm{x}} \mathrm{i}=\mathrm{K} \cdot \tan \left(\theta_{\mathrm{G}}\right)$
Open Calculator
ex $0.124974 \mathrm{~A}=0.2 \mathrm{~A} \cdot \tan \left(32^{\circ}\right)$

4) Field Inside Solenoid

$f_{x} B=\underline{\text { [Permeability-vacuum }] \cdot \mathrm{i} \cdot \mathrm{N}}$ L
ex $9.2 \mathrm{E}^{\wedge}-5 \mathrm{~Wb} / \mathrm{m}^{2}=\frac{[\text { Permeability-vacuum }] \cdot 2.2 \mathrm{~A} \cdot 100}{3000 \mathrm{~mm}}$
5) Field of Bar Magnet at Axial position

$$
f \times \mathrm{B}_{\text {axial }}=\frac{2 \cdot[\text { Permeability-vacuum }] \cdot \mathrm{M}}{4 \cdot \pi \cdot \mathrm{a}^{3}}
$$

8) Magnetic Field at Center of Arc
$\mathrm{fx} \mathrm{M}_{\mathrm{arc}}=\frac{[\text { Permeability-vacuum }] \cdot \mathrm{i} \cdot \theta}{4 \cdot \pi \cdot \mathrm{r}_{\mathrm{ring}}}$
$\mathrm{ex} 3.2 \mathrm{E}^{\wedge}-7 \mathrm{~Wb} / \mathrm{m}^{2}=\frac{[\text { Permeability-vacuum }] \cdot 2.2 \mathrm{~A} \cdot 0.5^{\circ}}{4 \cdot \pi \cdot 6 \mathrm{~mm}}$
9) Magnetic Field at Center of Ring
$\mathrm{fx} \mathrm{M}_{\text {ring }}=\frac{\text { [Permeability-vacuum }] \cdot \mathrm{i}}{2 \cdot \mathrm{r}_{\text {ring }}}$
Open Calculator

$$
\text { ex } 2.3 \mathrm{E}^{\wedge}-6 \mathrm{~Wb} / \mathrm{m}^{2}=\frac{[\text { Permeability-vacuum }] \cdot 2.2 \mathrm{~A}}{2 \cdot 6 \mathrm{~mm}}
$$

10) Magnetic Field Due to Infinite Straight Wire
$f_{\mathrm{x}} \mathrm{B}=\frac{[\text { Permeability-vacuum }] \cdot \mathrm{i}}{2 \cdot \pi \cdot \mathrm{~d}}$
ex $1.4 \mathrm{E}^{\wedge}-5 \mathrm{~Wb} / \mathrm{m}^{2}=\frac{\text { [Permeability-vacuum }] \cdot 2.2 \mathrm{~A}}{2 \cdot \pi \cdot 31 \mathrm{~mm}}$
11) Magnetic Field due to Straight Conductor

$$
\mathrm{B}=\frac{[\text { Permeability-vacuum }] \cdot \mathrm{i}}{4 \cdot \pi \cdot \mathrm{~d}} \cdot\left(\cos \left(\theta_{1}\right)-\cos \left(\theta_{2}\right)\right)
$$

ex

$$
1.5 \mathrm{E}^{\wedge}-6 \mathrm{~Wb} / \mathrm{m}^{2}=\frac{[\text { Permeability-vacuum }] \cdot 2.2 \mathrm{~A}}{4 \cdot \pi \cdot 31 \mathrm{~mm}} \cdot\left(\cos \left(45^{\circ}\right)-\cos \left(60^{\circ}\right)\right)
$$

12) Magnetic Field for Tangent Galvanometer
$f \times \mathrm{B}_{\mathrm{H}}=\frac{[\text { Permeability-vacuum }] \cdot \mathrm{n} \cdot \mathrm{i}}{2 \cdot \mathrm{r}_{\text {ring }} \cdot \tan \left(\theta_{\mathrm{G}}\right)}$
Open Calculator ©
ex $0.035026 \mathrm{~Wb} / \mathrm{m}^{2}=\frac{[\text { Permeability-vacuum }] \cdot 95 \cdot 2.2 \mathrm{~A}}{2 \cdot 6 \mathrm{~mm} \cdot \tan \left(32^{\circ}\right)}$
13) Magnetic Field on Axis of Ring
$f \times B=\frac{[\text { Permeability-vacuum }] \cdot i \cdot r_{\text {ring }}^{2}}{2 \cdot\left(r_{\text {ring }}^{2}+d^{2}\right)^{\frac{3}{2}}}$
$\mathrm{ex} 1.6 \mathrm{E}^{\wedge}-6 \mathrm{~Wb} / \mathrm{m}^{2}=\frac{[\text { Permeability-vacuum }] \cdot 2.2 \mathrm{~A} \cdot(6 \mathrm{~mm})^{2}}{2 \cdot\left((6 \mathrm{~mm})^{2}+(31 \mathrm{~mm})^{2}\right)^{\frac{3}{2}}}$
14) Magnetic Permeability
$\mathrm{fx} \mu=\frac{\mathrm{B}}{\mathrm{H}}$

$$
\text { ex } 5.555556 \mathrm{H} / \mathrm{m}=\frac{2.5 \mathrm{~Wb} / \mathrm{m}^{2}}{0.45 \mathrm{~A} / \mathrm{m}}
$$

15) Time Period of Magnetometer \leftrightarrows
$f \mathrm{fx}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{I}}{\mathrm{M} \cdot \mathrm{B}_{\mathrm{H}}}}$
ex $157.0796 \mathrm{~s}=2 \cdot \pi \cdot \sqrt{\frac{1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{90 \mathrm{~Wb} / \mathrm{m}^{2} \cdot 0.00002 \mathrm{~Wb} / \mathrm{m}^{2}}}$

Variables Used

- a Distance from Center to Point (Millimeter)
- A Cross-Sectional Area (Square Meter)
- B Magnetic Field (Weber per Square Meter)
- Baxial Field at Axial Position of Bar Magnet (Weber per Square Meter)
- Bequitorial Field at Equitorial Position of Bar Magnet (Weber per Square Meter)
- $\mathbf{B}_{\mathbf{H}}$ Horizontal Component of Earth's Magnetic Field (Weber per Square Meter)
- Bnet Net Earth's Magnetic Field (Weber per Square Meter)
- d Perpendicular Distance (Millimeter)
- F_{l} Magnetic Force per Unit Length (Newton per Meter)
- H Magnetic Field Intensity (Ampere per Meter)
- i Electric Current (Ampere)
- I Moment of Inertia (Kilogram Square Meter)
- \mathbf{I}_{1} Electric Current in Conductor 1 (Ampere)
- \mathbf{I}_{2} Electric Current in Conductor 2 (Ampere)
- K Reduction Factor of Tangent Galvanometer (Ampere)
- K ${ }_{\text {spring }}$ Spring Constant (Newton per Meter)
- L Length of Solonoid (Millimeter)
- M Magnetic Moment (Weber per Square Meter)
- Marc Field at Center of Arc (Weber per Square Meter)
- M ring Field at Center of Ring (Weber per Square Meter)
- \mathbf{n} Number of Turns of Coil
- \mathbf{N} Number of Turns
- $\mathbf{r}_{\text {ring }}$ Radius of Ring (Millimeter)
- T Time Period of Magnetometer (Second)
- $\bar{\delta}$ Angle of Dip (Degree)
- $\boldsymbol{\theta}$ Angle Obtained by Arc at Center (Degree)
- $\boldsymbol{\theta}_{1}$ Theta 1 (Degree)
- $\boldsymbol{\theta}_{2}$ Theta 2 (Degree)
- $\boldsymbol{\theta}_{\mathrm{G}}$ Angle of Deflection of Galvanometer (Degree)
- $\boldsymbol{\mu}$ Magnetic Permeability of Medium (Henry per Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [Permeability-vacuum], 4 * Pi * 1E-7 Henry / Meter Permeability of vacuum
- Function: arccos, arccos(Number) Inverse trigonometric cosine function
- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sqrt, sqrt(Number)

Square root function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Magnetic Field Strength in Ampere per Meter (A/m) Magnetic Field Strength Unit Conversion $\sqrt{ }$
- Measurement: Magnetic Field in Weber per Square Meter (Wb/m²) Magnetic Field Unit Conversion
- Measurement: Surface Tension in Newton per Meter (N/m) Surface Tension Unit Conversion
- Measurement: Moment of Inertia in Kilogram Square Meter $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$ Moment of Inertia Unit Conversion
- Measurement: Magnetic Permeability in Henry per Meter (H/m) Magnetic Permeability Unit Conversion
- Measurement: Stiffness Constant in Newton per Meter (N/m) Stiffness Constant Unit Conversion

Check other formula lists

- Capacitor Formulas
- Electromagnetic Induction Formulas
- Electrostatics Formulas
- Magnetic Field due to Current Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch
Please leave your feedback here...

