
calculatoratoz.com

Roof Live Loads Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 48 Roof Live Loads Formulas

Roof Live Loads \mathbb{A}

1) Roof Live Load
$f_{\mathrm{x}} \mathrm{L}_{\mathrm{f}}=20 \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{2}$
ex $18.18 \mathrm{~N}=20 \cdot 1.01 \cdot 0.90$
2) Roof Live Load when Tributary Area Les in Range 200 to 600 square feet

$$
f \mathrm{f} \mathrm{~L}_{\mathrm{f}}=20 \cdot\left(1.2-0.001 \cdot \mathrm{~A}_{\mathrm{t}}\right) \cdot \mathrm{R}_{2}
$$

ex $17.94983 \mathrm{~N}=20 \cdot\left(1.2-0.001 \cdot 2182.782 \mathrm{ft}^{2}\right) \cdot 0.90$
3) Tributary Area given Roof Live Load
$f \times \mathrm{A}_{\mathrm{t}}=1000 \cdot\left(1.2-\left(\frac{\mathrm{L}_{\mathrm{f}}}{20 \cdot \mathrm{R}_{2}}\right)\right)$
Open Calculator
ex $2092.983 \mathrm{ft}^{2}=1000 \cdot\left(1.2-\left(\frac{18.1 \mathrm{~N}}{20 \cdot 0.90}\right)\right)$

Seismic Loads

4) Building Height for other Buildings given Fundamental Period
$f \times h_{n}=\left(\frac{T}{0.02}\right)^{\frac{4}{3}}$
Open Calculator 〔
ex $56.91284 \mathrm{ft}=\left(\frac{0.170 \mathrm{~s}}{0.02}\right)^{\frac{4}{3}}$
5) Building Height for Reinforced Concrete Frames given Fundamental Period
$f \times h_{n}=\left(\frac{\mathrm{T}}{0.03}\right)^{\frac{4}{3}}$
Open Calculator
ex $33.1453 \mathrm{ft}=\left(\frac{0.170 \mathrm{~s}}{0.03}\right)^{\frac{4}{3}}$
6) Building Height for Steel Eccentrically Braced Frames given Fundamental Period
$f \times h_{\mathrm{n}}=\left(\frac{\mathrm{T}}{0.03}\right)^{\frac{4}{3}}$
$\mathrm{ex} 33.1453 \mathrm{ft}=\left(\frac{0.170 \mathrm{~s}}{0.03}\right)^{\frac{4}{3}}$
7) Building Height for Steel Frame given Fundamental Period
$f x h_{n}=\left(\frac{T}{0.035}\right)^{\frac{4}{3}}$
Open Calculator
$\operatorname{ex} 26.98731 \mathrm{ft}=\left(\frac{0.170 \mathrm{~s}}{0.035}\right)^{\frac{4}{3}}$
8) Fundamental Period for other Buildings
$\mathrm{fx} \mathrm{T}=0.02 \cdot \mathrm{~h}_{\mathrm{n}}^{\frac{3}{4}}$
Open Calculator
ex $0.110383 \mathrm{~s}=0.02 \cdot(32 \mathrm{ft})^{\frac{3}{4}}$
9) Fundamental Period for Reinforced Concrete Frames
$f \mathrm{x}=0.03 \cdot \mathrm{~h}_{\mathrm{n}}^{\frac{3}{4}}$
Open Calculator
ex $0.165575 \mathrm{~s}=0.03 \cdot(32 \mathrm{ft})^{\frac{3}{4}}$
10) Fundamental Period for Steel Eccentrically Braced Frames
$\mathrm{fx} \mathrm{T}=0.03 \cdot \mathrm{~h}_{\mathrm{n}}^{\frac{3}{4}}$
Open Calculator ©
ex $0.165575 \mathrm{~s}=0.03 \cdot(32 \mathrm{ft})^{\frac{3}{4}}$
11) Fundamental Period for Steel Frames
$\mathrm{fx} \mathrm{T}=0.035 \cdot \mathrm{~h}_{\mathrm{n}}^{\frac{3}{4}}$
ex $0.193171 \mathrm{~s}=0.035 \cdot(32 \mathrm{ft})^{\frac{3}{4}}$
12) Fundamental Period given Seismic Response Coefficient
$\mathrm{fx} \mathrm{T}=\left(1.2 \cdot \frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{R} \cdot \mathrm{C}_{\mathrm{s}}}\right)^{\frac{3}{2}}$
Open Calculator
ex $0.171409 \mathrm{~s}=\left(1.2 \cdot \frac{0.54}{6 \cdot 0.35}\right)^{\frac{3}{2}}$
13) Lateral Force
$f x \mathrm{~V}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{C}_{\mathrm{ux}}}$
Open Calculator
ex $8.382706 \mathrm{kipf}=\frac{44000 \mathrm{~N}}{1.18}$
14) Lateral Seismic Force
$f \mathrm{f} \mathrm{F}_{\mathrm{x}}=\mathrm{C}_{\mathrm{ux}} \cdot \mathrm{V}$
Open Calculator
ex $44090.77 \mathrm{~N}=1.18 \cdot 8.40 \mathrm{kipf}$
15) Response Modification Factor
$\mathrm{fx} \mathrm{R}=1.2 \cdot \frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{C}_{\mathrm{s}} \cdot \mathrm{T}^{\frac{2}{3}}}$

Open Calculator

$$
\operatorname{ex} 6.033107=1.2 \cdot \frac{0.54}{0.35 \cdot(0.170 \mathrm{~s})^{\frac{2}{3}}}
$$

16) Response Modification Factor by Velocity Dependent Structures
$f \times R=2.5 \cdot \frac{\mathrm{C}_{\mathrm{a}}}{\mathrm{C}_{\mathrm{s}}}$
ex $10.71429=2.5 \cdot \frac{1.5}{0.35}$
17) Seismic Coefficient for Short Period Structures
$f \mathrm{~F} \mathrm{C}_{\mathrm{v}}=\frac{\mathrm{C}_{\mathrm{s}} \cdot\left(\mathrm{R} \cdot \mathrm{T}^{\frac{2}{3}}\right)}{1.2}$
Open Calculator
$\operatorname{ex} 0.537037=\frac{0.35 \cdot\left(6 \cdot(0.170 \mathrm{~s})^{\frac{2}{3}}\right)}{1.2}$
18) Seismic Coefficient for Velocity Dependent Structures
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{a}}=\mathrm{C}_{\mathrm{s}} \cdot \frac{\mathrm{R}}{2.5}$
ex $0.84=0.35 \cdot \frac{6}{2.5}$
19) Seismic Response Coefficient given Base Shear
f. $\mathrm{C}_{\mathrm{s}}=\frac{\mathrm{V}}{\mathrm{W}}$

Open Calculator
ex $0.350024=\frac{8.40 \mathrm{kipf}}{106.75 \mathrm{kN}}$
20) Seismic Response Coefficient given Fundamental Period
$f \times \mathrm{C}_{\mathrm{s}}=1.2 \cdot \frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{R} \cdot \mathrm{T}^{\frac{2}{3}}}$
Open Calculator
ex $0.351931=1.2 \cdot \frac{0.54}{6 \cdot(0.170 \mathrm{~s})^{\frac{2}{3}}}$
21) Seismic Response Coefficient given Seismic Coefficient for Velocity Dependent Structures
$f \mathrm{f} \mathrm{C}_{\mathrm{s}}=2.5 \cdot \frac{\mathrm{C}_{\mathrm{a}}}{\mathrm{R}}$
ex $0.625=2.5 \cdot \frac{1.5}{6}$

22) Total Dead Load given Base Shear

$\mathrm{fx}_{\mathrm{x}}^{\mathrm{W}} \mathrm{W}=\frac{\mathrm{V}}{\mathrm{C}_{\mathrm{s}}}$
Open Calculator
ex $106.7573 \mathrm{kN}=\frac{8.40 \mathrm{kipf}}{0.35}$
23) Total Lateral Force Acting in Direction of each of Principal Axis
$f \mathrm{f} V=\mathrm{C}_{\mathrm{s}} \cdot \mathrm{W}$
Open Calculator
ex $8.399424 \mathrm{kipf}=0.35 \cdot 106.75 \mathrm{kN}$
24) Vertical Distribution Factor given Lateral Force
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{ux}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{V}}$
Open Calculator
ex $1.177571=\frac{44000 \mathrm{~N}}{8.40 \mathrm{kipf}}$

Snow Loads

25) Ground Snow Load given Roof Snow Load
$f_{\mathrm{x}} \mathrm{P}_{\mathrm{g}}=\frac{\mathrm{P}_{\mathrm{f}}}{0.7 \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I}}$
Open Calculator
ex $22.13695 \mathrm{psf}=\frac{12 \mathrm{psf}}{0.7 \cdot 0.80 \cdot 1.21 \cdot 0.8}$

开
26) Ground Snow Load using Roof Type
$f \times P_{g}=\frac{P_{f}}{C \cdot I}$
Open Calculator
ex $5 \mathrm{psf}=\frac{12 \mathrm{psf}}{3 \cdot 0.8}$
27) Importance Factor for End Use using Roof Snow Load
$\mathrm{fx}_{\mathrm{x}} \mathrm{I}=\frac{\mathrm{P}_{\mathrm{f}}}{0.7 \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{P}_{\mathrm{g}}}$
Open Calculator
ex $0.983865=\frac{12 \mathrm{psf}}{0.7 \cdot 0.80 \cdot 1.21 \cdot 18 \mathrm{psf}}$
28) Importance Factor using Roof Type
$\mathrm{fx} \mathrm{I}=\frac{\mathrm{P}_{\mathrm{f}}}{\mathrm{C} \cdot \mathrm{P}_{\mathrm{g}}}$
Open Calculator
ex $0.222222=\frac{12 \mathrm{psf}}{3 \cdot 18 \mathrm{psf}}$
29) Roof Snow Load
$f \mathrm{x} \mathrm{P}_{\mathrm{f}}=0.7 \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I} \cdot \mathrm{P}_{\mathrm{g}}$
ex $9.75744 \mathrm{psf}=0.7 \cdot 0.80 \cdot 1.21 \cdot 0.8 \cdot 18 \mathrm{psf}$
30) Roof Snow Load given Roof Type
$f \mathrm{f} \quad \mathrm{P}_{\mathrm{f}}=\mathrm{I} \cdot \mathrm{C} \cdot \mathrm{P}_{\mathrm{g}}$
ex $43.2 \mathrm{psf}=0.8 \cdot 3 \cdot 18 \mathrm{psf}$
31) Thermal Effects factor given Roof Snow Load
$f x C_{t}=\frac{P_{f}}{0.7 \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{I} \cdot \mathrm{P}_{\mathrm{g}}}$
Open Calculator
ex $1.488095=\frac{12 \mathrm{psf}}{0.7 \cdot 0.80 \cdot 0.8 \cdot 18 \mathrm{psf}}$
32) Wind Exposure Factor given Roof Snow Load
$f \times \mathrm{C}_{\mathrm{e}}=\frac{\mathrm{P}_{\mathrm{f}}}{0.7 \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I} \cdot \mathrm{P}_{\mathrm{g}}}$
$\mathbf{e x} 0.983865=\frac{12 \mathrm{psf}}{0.7 \cdot 1.21 \cdot 0.8 \cdot 18 \mathrm{psf}}$

Wind Loads

33) Basic Wind given Velocity Pressure
fx $\mathrm{V}_{\mathrm{B}}=\sqrt{\frac{\mathrm{q}}{0.00256 \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{K}_{\mathrm{zt}} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{I}}}$
Open Calculator
$\mathrm{ex} 29.6107 \mathrm{~m} / \mathrm{s}=\sqrt{\frac{20 \mathrm{pdl} / \mathrm{ft}^{2}}{0.00256 \cdot 0.85 \cdot 25 \cdot 0.78 \cdot 0.8}}$
34) Equivalent Static Design Wind Pressure
$f \mathrm{x} p=\mathrm{q} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{p}}$

Open Calculator

ex $14.88 \mathrm{pdl} / \mathrm{ft}^{2}=20 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 1.20 \cdot 0.62$
35) External Pressure Coefficient as given by ASCE 7
$f \mathrm{f} \mathrm{C}_{\mathrm{ep}}=\frac{\mathrm{p}+\mathrm{q}_{\mathrm{i}} \cdot \mathrm{GC}_{\mathrm{pt}}}{\mathrm{G} \cdot \mathrm{q}}$
Open Calculator
ex $1.18875=\frac{14.88 \mathrm{pdl} / \mathrm{ft}^{2}+15 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 0.91}{1.20 \cdot 20 \mathrm{pdl} / \mathrm{ft}^{2}}$
36) Gust Effect Factor as given by ASCE 7
$f \mathrm{fx}=\frac{\mathrm{p}+\mathrm{q}_{\mathrm{i}} \cdot \mathrm{GC}_{\mathrm{pt}}}{\mathrm{q} \cdot \mathrm{C}_{\mathrm{ep}}}$
Open Calculatores
ex $1.501579=\frac{14.88 \mathrm{pdl} / \mathrm{ft}^{2}+15 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 0.91}{20 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 0.95}$
37) Gust Response Factor using Wind Pressure
$f_{x} G=\frac{p}{q \cdot C_{p}}$
Open Calculator
ex $1.2=\frac{14.88 \mathrm{pdl} / \mathrm{ft}^{2}}{20 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 0.62}$
38) Importance Factor given Velocity Pressure
$f x I=\frac{q}{0.00256 \cdot K_{z} \cdot K_{z t} \cdot K_{d} \cdot V_{B}^{2}}$

Open Calculator
ex $0.8=\frac{20 \mathrm{pdl} / \mathrm{ft}^{2}}{0.00256 \cdot 0.85 \cdot 25 \cdot 0.78 \cdot(29.6107 \mathrm{~m} / \mathrm{s})^{2}}$
39) Importance Factor using Velocity Pressure
$f \mathbf{x}=\frac{\mathrm{q}}{0.00256 \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{K}_{\mathrm{zt}} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{V}_{\mathrm{B}}^{2}}$
Open Calculator
ex $0.8=\frac{20 \mathrm{pdl} / \mathrm{ft}^{2}}{0.00256 \cdot 0.85 \cdot 25 \cdot 0.78 \cdot(29.6107 \mathrm{~m} / \mathrm{s})^{2}}$
40) Internal Pressure Coefficient as given by ASCE 7
$f_{\mathrm{x}} \mathrm{GC}_{\mathrm{pt}}=\frac{\left(\mathrm{q} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{ep}}\right)-\mathrm{p}}{\mathrm{q}_{\mathrm{i}}}$
Open Calculator
ex $0.528=\frac{\left(20 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 1.20 \cdot 0.95\right)-14.88 \mathrm{pdl} / \mathrm{ft}^{2}}{15 \mathrm{pdl} / \mathrm{ft}^{2}}$
41) Pressure Coefficient using Wind Pressure
$f \mathrm{f} \mathrm{C}_{\mathrm{p}}=\frac{\mathrm{p}}{\mathrm{q} \cdot \mathrm{G}}$
Open Calculator
ex $0.62=\frac{14.88 \mathrm{pdl} / \mathrm{ft}^{2}}{20 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 1.20}$
42) Topographic Factor given Velocity Pressure $\boxed{\Omega}$
$f \mathrm{fx} \mathrm{K}_{\mathrm{zt}}=\frac{\mathrm{q}}{0.00256 \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{I} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{V}_{\mathrm{B}}^{2}}$
Open Calculator

$$
25=\frac{20 \mathrm{pdl} / \mathrm{ft}^{2}}{0.00256 \cdot 0.85 \cdot 0.8 \cdot 0.78 \cdot(29.6107 \mathrm{~m} / \mathrm{s})^{2}}
$$

43) Velocity Pressure

$f_{\mathrm{x}}^{\mathrm{x}}=0.00256 \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{K}_{\mathrm{zt}} \cdot \mathrm{K}_{\mathrm{d}} \cdot\left(\mathrm{V}_{\mathrm{B}}^{2}\right) \cdot \mathrm{I}$
Open Calculator
ex $20 \mathrm{pdl} / \mathrm{ft}^{2}=0.00256 \cdot 0.85 \cdot 25 \cdot 0.78 \cdot\left((29.6107 \mathrm{~m} / \mathrm{s})^{2}\right) \cdot 0.8$
44) Velocity Pressure as given by ASCE 7
$f \mathrm{x} q=\frac{\mathrm{p}+\mathrm{q}_{\mathrm{i}} \cdot \mathrm{GC}_{\mathrm{pt}}}{\mathrm{G} \cdot \mathrm{C}_{\mathrm{ep}}}$
Open Calculator
ex $25.02632 \mathrm{pdl} / \mathrm{ft}^{2}=\frac{14.88 \mathrm{pdl} / \mathrm{ft}^{2}+15 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 0.91}{1.20 \cdot 0.95}$
45) Velocity Pressure at given Point as given by ASCE 7
$f x q_{i}=\frac{\left(q \cdot G \cdot C_{e p}\right)-p}{G C_{p t}}$
ex $8.703297 \mathrm{pdl} / \mathrm{ft}^{2}=\frac{\left(20 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 1.20 \cdot 0.95\right)-14.88 \mathrm{pdl} / \mathrm{ft}^{2}}{0.91}$
46) Velocity Pressure using Wind Pressure
$f x q=\frac{p}{G \cdot C_{p}}$
Open Calculator ©
ex $20 \mathrm{pdl} / \mathrm{ft}^{2}=\frac{14.88 \mathrm{pdl} / \mathrm{ft}^{2}}{1.20 \cdot 0.62}$
47) Wind Directionality Factor given Velocity Pressure
$\mathrm{fx}_{\mathrm{x}} \mathrm{K}_{\mathrm{d}}=\frac{\mathrm{q}}{0.00256 \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{K}_{\mathrm{zt}} \cdot \mathrm{I} \cdot \mathrm{V}_{\mathrm{B}}^{2}}$
Open Calculator
ex $0.78=\frac{20 \mathrm{pdl} / \mathrm{ft}^{2}}{0.00256 \cdot 0.85 \cdot 25 \cdot 0.8 \cdot(29.6107 \mathrm{~m} / \mathrm{s})^{2}}$
48) Wind Pressure as given by ASCE 7
$\mathrm{fx} \mathrm{p}=\mathrm{q} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{ep}}-\mathrm{q}_{\mathrm{i}} \cdot \mathrm{GC}_{\mathrm{pt}}$
Open Calculator
ex $9.15 \mathrm{pdl} / \mathrm{ft}^{2}=20 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 1.20 \cdot 0.95-15 \mathrm{pdl} / \mathrm{ft}^{2} \cdot 0.91$

Variables Used

- $\mathbf{A}_{\mathbf{t}}$ Tributary Area (Square Foot)
- C Roof Type
- \mathbf{C}_{a} Seismic Coefficient for Velocity Dependent
- C_{e} Wind Exposure Factor
- Cep External Pressure Coefficient
- \mathbf{C}_{p} Pressure Coefficient
- $\mathbf{C}_{\mathbf{S}}$ Seismic Response Coefficient
- $\mathbf{C}_{\mathbf{t}}$ Thermal Effects Factor
- $\mathbf{C}_{\text {ux }}$ Vertical Distribution Factor
- $\mathbf{C}_{\mathbf{v}}$ Seismic Coefficient for Short Period Structures
- $\mathbf{F}_{\mathbf{x}}$ Lateral Seismic Force (Newton)
- G Gust Response Factor
- $\mathbf{G C}_{\text {pt }}$ Internal Pressure Coefficient
- $\mathbf{h}_{\mathbf{n}}$ Height of Building (Foot)
- I Importance Factor for End Use
- $\mathbf{K}_{\mathbf{d}}$ Wind Directionality Factor
- $\mathbf{K}_{\mathbf{z}}$ Velocity Exposure Coefficient
- $\mathbf{K}_{\mathbf{z t}}$ Topographic Factor
- L_{f} Roof Live Load (Newton)
- p Wind Pressure (Poundal per Square Foot)
- $\mathbf{P}_{\mathbf{f}}$ Roof Snow Load (Pounds per Square Foot)
- $\mathbf{P}_{\mathbf{g}}$ Ground Snow Load (Pounds per Square Foot)
- q Velocity Pressure (Poundal per Square Foot)
- $\mathbf{q}_{\mathbf{i}}$ Velocity Pressure at Point (Poundal per Square Foot)
- R Response Modification Factor
- $\mathbf{R}_{\mathbf{1}}$ Reduction Factor for Size of Tributary Area
- $\mathbf{R}_{\mathbf{2}}$ Reduction Factor for Slope of Roof
- T Fundamental Period (Second)
- V Lateral Force (Kilopound-Force)
- $\mathbf{V}_{\mathbf{B}}$ Basic Wind Speed (Meter per Second)
- W Total Dead Load (Kilonewton)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Foot (ft)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Area in Square Foot (ft²)

Area Unit Conversion

- Measurement: Pressure in Pounds per Square Foot (psf), Poundal per Square Foot (pdl/ft²)
Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Force in Newton (N), Kilopound-Force (kipf), Kilonewton (kN)
Force Unit Conversion

Check other formula lists

- Roof Live Loads Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

