

Roof Live Loads Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 48 Roof Live Loads Formulas

Roof Live Loads

1) Roof Live Load

fx
$$m L_f = 20 \cdot R_1 \cdot R_2$$

Open Calculator

$$\texttt{ex} \ 18.18 \texttt{N} = 20 \cdot 1.01 \cdot 0.90$$

2) Roof Live Load when Tributary Area Les in Range 200 to 600 square feet

fx
$$m L_f = 20 \cdot (1.2 - 0.001 \cdot A_t) \cdot R_2$$

Open Calculator 🚰

$$\textbf{ex} \ 17.94983 \textbf{N} = 20 \cdot (1.2 - 0.001 \cdot 2182.782 \text{ft}^2) \cdot 0.90$$

3) Tributary Area given Roof Live Load

$$oldsymbol{A}_{
m t} = 1000 \cdot \left(1.2 - \left(rac{
m L_f}{20 \cdot
m R_2}
ight)
ight)$$

Open Calculator 🗗

$$extbf{ex} 2092.983 ext{ft}^2 = 1000 \cdot \left(1.2 - \left(rac{18.1 ext{N}}{20 \cdot 0.90}
ight)
ight)$$

Seismic Loads 2

4) Building Height for other Buildings given Fundamental Period

Open Calculator

ex
$$56.91284 \mathrm{ft} = \left(\frac{0.170 \mathrm{s}}{0.02}\right)^{\frac{4}{3}}$$

5) Building Height for Reinforced Concrete Frames given Fundamental Period

Open Calculator 🖒

ex
$$33.1453 \mathrm{ft} = \left(rac{0.170 \mathrm{s}}{0.03}
ight)^{rac{4}{3}}$$

6) Building Height for Steel Eccentrically Braced Frames given

Open Calculator 🗗

ex
$$33.1453 ext{ft} = \left(rac{0.170 ext{s}}{0.03}
ight)^{rac{4}{3}}$$

7) Building Height for Steel Frame given Fundamental Period 🗗

$$\mathbf{f}$$
 $\mathbf{h}_{\mathrm{n}} = \left(rac{\mathrm{T}}{0.035}
ight)^{rac{4}{3}}$

ex
$$26.98731 ext{ft} = \left(\frac{0.170 ext{s}}{0.035}\right)^{\frac{4}{3}}$$

8) Fundamental Period for other Buildings

9) Fundamental Period for Reinforced Concrete Frames

$$ex 0.165575s = 0.03 \cdot (32ft)^{\frac{3}{4}}$$

10) Fundamental Period for Steel Eccentrically Braced Frames

fx
$$T=0.03\cdot h_n^{rac{3}{4}}$$

$$ext{ex} \left[0.165575 ext{s} = 0.03 \cdot (32 ext{ft})^{rac{3}{4}}
ight]$$

11) Fundamental Period for Steel Frames

Open Calculator 🖸

 $extbf{ex} \ 0.193171 ext{s} = 0.035 \cdot (32 ext{ft})^{rac{3}{4}}$

12) Fundamental Period given Seismic Response Coefficient

Open Calculator

ex 0.171409s = $\left(1.2 \cdot \frac{0.54}{6 \cdot 0.35}\right)^{\frac{3}{2}}$

13) Lateral Force

Open Calculator 🚰

14) Lateral Seismic Force

fx
$$F_{
m x} = C_{
m ux} \cdot V$$

ex $44090.77N = 1.18 \cdot 8.40 \text{kipf}$

15) Response Modification Factor

Open Calculator 🖸

16) Response Modification Factor by Velocity Dependent Structures

Open Calculator

 $\boxed{10.71429 = 2.5 \cdot \frac{1.5}{0.35}}$

17) Seismic Coefficient for Short Period Structures

Open Calculator

18) Seismic Coefficient for Velocity Dependent Structures

 $\mathbf{K} \mathbf{C_a} = \mathbf{C_s} \cdot \frac{\mathbf{R}}{2.5}$

Open Calculator

 $ex 0.84 = 0.35 \cdot \frac{6}{2.5}$

19) Seismic Response Coefficient given Base Shear

 $\left|\mathbf{C}_{\mathrm{s}}=rac{\mathrm{V}}{\mathrm{W}}
ight|$

Open Calculator

 $= 2.350024 = \frac{8.40 \text{kipf}}{106.75 \text{kN}}$

20) Seismic Response Coefficient given Fundamental Period

 $\left[C_{\mathrm{s}} = 1.2 \cdot rac{C_{\mathrm{v}}}{\mathrm{R} \cdot \mathrm{T}^{rac{2}{3}}}
ight]$

Open Calculator 🚰

ex $0.351931 = 1.2 \cdot \frac{0.54}{6 \cdot (0.170 \mathrm{s})^{\frac{2}{3}}}$

21) Seismic Response Coefficient given Seismic Coefficient for Velocity Dependent Structures

 $m C_s = 2.5 \cdot rac{C_a}{R}$

Open Calculator

 $\boxed{0.625 = 2.5 \cdot \frac{1.5}{6}}$

22) Total Dead Load given Base Shear 🚰

Open Calculator 🚰

ex 106.7573kN $= \frac{8.40$ kipf}{0.35}

23) Total Lateral Force Acting in Direction of each of Principal Axis

Open Calculator

 $m{ex} \ 8.399424 {
m kipf} = 0.35 \cdot 106.75 {
m kN}$

24) Vertical Distribution Factor given Lateral Force

Open Calculator 🖸

 $= 1.177571 = \frac{44000N}{8.40 \text{kipf}}$

Snow Loads &

25) Ground Snow Load given Roof Snow Load

$$extbf{P}_{
m g} = rac{ ext{P}_{
m f}}{0.7 \cdot ext{C}_{
m e} \cdot ext{C}_{
m t} \cdot ext{I}}$$

Open Calculator

 $\mathbf{ex} = \frac{12 \mathrm{psf}}{0.7 \cdot 0.80 \cdot 1.21 \cdot 0.8}$

26) Ground Snow Load using Roof Type

Open Calculator

 $5psf = \frac{12psf}{3 \cdot 0.8}$

27) Importance Factor for End Use using Roof Snow Load

Open Calculator

28) Importance Factor using Roof Type 🚰

Open Calculator 🗗

29) Roof Snow Load

fx
$$P_{
m f} = 0.7 \cdot C_{
m e} \cdot C_{
m t} \cdot I \cdot P_{
m g}$$

 $= 9.75744 ext{psf} = 0.7 \cdot 0.80 \cdot 1.21 \cdot 0.8 \cdot 18 ext{psf}$

30) Roof Snow Load given Roof Type G

fx $P_{
m f} = I \cdot C \cdot P_{
m g}$ $43.2psf = 0.8 \cdot 3 \cdot 18psf$

Open Calculator

Open Calculator

Open Calculator

31) Thermal Effects factor given Roof Snow Load 6

 $\left| \mathbf{C}_{\mathrm{t}} \right| = rac{\mathbf{P}_{\mathrm{f}}}{0.7 \cdot \mathbf{C}_{\mathrm{e}} \cdot \mathbf{I} \cdot \mathbf{P}_{\mathrm{o}}}$

 $\boxed{ 1.488095 = \frac{12 \mathrm{psf}}{0.7 \cdot 0.80 \cdot 0.8 \cdot 18 \mathrm{psf}} }$

32) Wind Exposure Factor given Roof Snow Load 🛂

 $\left| \mathbf{C}_{\mathrm{e}} \right| = rac{\mathrm{P_{f}}}{0.7 \cdot \mathrm{C_{t} \cdot I \cdot P_{g}}}$

 $0.983865 = \frac{12psf}{0.7 \cdot 1.21 \cdot 0.8 \cdot 18psf}$

Wind Loads

33) Basic Wind given Velocity Pressure

 $V_{
m B} = \sqrt{rac{
m q}{0.00256\cdot K_z\cdot K_{zt}\cdot K_{d}\cdot I}}$

Open Calculator

 $ext{ex} 29.6107 ext{m/s} = \sqrt{rac{20 ext{pdl}/ ext{ft}^2}{0.00256 \cdot 0.85 \cdot 25 \cdot 0.78 \cdot 0.8}}$

34) Equivalent Static Design Wind Pressure

 $\mathbf{f}\mathbf{x} \left[\mathbf{p} = \mathbf{q} \cdot \mathbf{G} \cdot \mathbf{C_p}
ight]$

Open Calculator

 $\textbf{ex} \ 14.88 \text{pdl/ft}^{\scriptscriptstyle 2} = 20 \text{pdl/ft}^{\scriptscriptstyle 2} \cdot 1.20 \cdot 0.62$

35) External Pressure Coefficient as given by ASCE 7

 $\mathbf{C}_{\mathrm{ep}} = rac{\mathrm{p} + \mathrm{q_i} \cdot \mathrm{GC}_{\mathrm{pt}}}{\mathrm{G} \cdot \mathrm{q}}$

Open Calculator

 $extbf{ex} 1.18875 = rac{14.88 ext{pdl/ft}^2 + 15 ext{pdl/ft}^2 \cdot 0.91}{1.20 \cdot 20 ext{pdl/ft}^2}$

36) Gust Effect Factor as given by ASCE 7

Open Calculator

 $ext{ex} 1.501579 = rac{14.88 ext{pdl/ft}^2 + 15 ext{pdl/ft}^2 \cdot 0.91}{20 ext{pdl/ft}^2 \cdot 0.95}$

37) Gust Response Factor using Wind Pressure

= 1.2 = $rac{14.88 ext{pdl/ft}^2}{20 ext{pdl/ft}^2 \cdot 0.62}$

Open Calculator 2

Open Calculator

Open Calculator 2

Open Calculator

38) Importance Factor given Velocity Pressure

 $extbf{I} = rac{ ext{q}}{0.00256 \cdot ext{K}_{ ext{d}} \cdot ext{K}_{ ext{d}} \cdot ext{V}_{ ext{P}}^2}$

 $extbf{ex} 0.8 = rac{20 ext{pdl/ft}^2}{0.00256 \cdot 0.85 \cdot 25 \cdot 0.78 \cdot \left(29.6107 ext{m/s}
ight)^2}$

39) Importance Factor using Velocity Pressure

 $extbf{fx} extbf{I} = rac{ ext{q}}{0.00256 \cdot ext{K}_{ ext{z}} \cdot ext{K}_{ ext{zt}} \cdot ext{K}_{ ext{d}} \cdot ext{V}_{ ext{R}}^2}$

 $extbf{ex} = rac{20 ext{pdl/ft}^2}{0.00256 \cdot 0.85 \cdot 25 \cdot 0.78 \cdot \left(29.6107 ext{m/s}
ight)^2}$ 40) Internal Pressure Coefficient as given by ASCE 7

 $\operatorname{GC}_{\mathrm{pt}} = rac{(\mathrm{q}\cdot\mathrm{G}\cdot\mathrm{C}_{\mathrm{ep}}) - \mathrm{p}}{\mathrm{q}_{\mathrm{s}}}$

 $oxed{ex} 0.528 = rac{(20 ext{pdl/ft}^2 \cdot 1.20 \cdot 0.95) - 14.88 ext{pdl/ft}^2}{15 ext{pdl/ft}^2}$

41) Pressure Coefficient using Wind Pressure

$\mathbf{f} \mathbf{x} \mathbf{C}_{\mathrm{p}} = rac{\mathbf{p}}{\mathbf{q} \cdot \mathbf{G}}$

 $extbf{ex} 0.62 = rac{14.88 ext{pdl/ft}^2}{20 ext{pdl/ft}^2 \cdot 1.20}$

42) Topographic Factor given Velocity Pressure

Open Calculator

 $\mathbf{K}_{\mathrm{zt}} = rac{\mathbf{q}}{0.00256 \cdot \mathrm{K_z} \cdot \mathrm{I} \cdot \mathrm{K_d} \cdot \mathrm{V_B^2}}$

 $\mathbf{ex} = rac{20 \mathrm{pdl/ft^2}}{0.00256 \cdot 0.85 \cdot 0.8 \cdot 0.78 \cdot \left(29.6107 \mathrm{m/s}
ight)^2}$

43) Velocity Pressure

 $\mathbf{r} = 0.00256 \cdot \mathrm{K_z} \cdot \mathrm{K_{zt}} \cdot \mathrm{K_d} \cdot \left(\mathrm{V_B^2} \right) \cdot \mathrm{I}$

Open Calculator

-2

44) Velocity Pressure as given by ASCE 7

 \mathbf{f} $\mathbf{q} = rac{\mathbf{p} + \mathbf{q_i} \cdot \mathbf{GC_{pt}}}{\mathbf{G} \cdot \mathbf{C_{ep}}}$

Open Calculator 🚰

 $extbf{ex} 25.02632 ext{pdl/ft}^2 = rac{14.88 ext{pdl/ft}^2 + 15 ext{pdl/ft}^2 \cdot 0.91}{1.20 \cdot 0.95}$

 $\texttt{ex} \ \ 20 \mathrm{pdl/ft^2} = 0.00256 \cdot 0.85 \cdot 25 \cdot 0.78 \cdot \left((29.6107 \mathrm{m/s})^2 \right) \cdot 0.8$

45) Velocity Pressure at given Point as given by ASCE 7

 $\mathbf{f}_{\mathbf{z}} \mathbf{q}_{\mathrm{i}} = rac{(\mathbf{q} \cdot \mathbf{G} \cdot \mathbf{C}_{\mathrm{ep}}) - \mathbf{p}}{\mathbf{G} \mathbf{C}_{\mathrm{pt}}}$

Open Calculator 🗗

 $ext{ex} 8.703297 ext{pdl/ft}^2 = rac{(20 ext{pdl/ft}^2 \cdot 1.20 \cdot 0.95) - 14.88 ext{pdl/ft}^2}{0.91}$

46) Velocity Pressure using Wind Pressure

fx $\mathbf{q} = rac{\mathbf{p}}{\mathbf{G} \cdot \mathbf{C_p}}$

Open Calculator

 $extbf{ex} 20 ext{pdl/ft}^2 = rac{14.88 ext{pdl/ft}^2}{1.20 \cdot 0.62}$

47) Wind Directionality Factor given Velocity Pressure

Open Calculator

 $= \frac{20 \mathrm{pdl/ft^2}}{0.00256 \cdot 0.85 \cdot 25 \cdot 0.8 \cdot \left(29.6107 \mathrm{m/s}\right)^2}$

48) Wind Pressure as given by ASCE 7 🛂

Open Calculator 🗗

 $ext{ex} \ 9.15 ext{pdl/ft}^2 = 20 ext{pdl/ft}^2 \cdot 1.20 \cdot 0.95 - 15 ext{pdl/ft}^2 \cdot 0.91$

Variables Used

- At Tributary Area (Square Foot)
- C Roof Type
- Ca Seismic Coefficient for Velocity Dependent
- Ce Wind Exposure Factor
- Cep External Pressure Coefficient
- C_p Pressure Coefficient
- Cs Seismic Response Coefficient
- C_t Thermal Effects Factor
- C_{IIX} Vertical Distribution Factor
- C_v Seismic Coefficient for Short Period Structures
- **F**_x Lateral Seismic Force (Newton)
- G Gust Response Factor
- GC_{pt} Internal Pressure Coefficient
- h_n Height of Building (Foot)
- I Importance Factor for End Use
- K_d Wind Directionality Factor
- K_z Velocity Exposure Coefficient
- Kzt Topographic Factor
- Lf Roof Live Load (Newton)
- p Wind Pressure (Poundal per Square Foot)
- Pf Roof Snow Load (Pounds per Square Foot)

- P_q Ground Snow Load (Pounds per Square Foot)
- q Velocity Pressure (Poundal per Square Foot)
- qi Velocity Pressure at Point (Poundal per Square Foot)
- R Response Modification Factor
- R₁ Reduction Factor for Size of Tributary Area
- R₂ Reduction Factor for Slope of Roof
- **T** Fundamental Period (Second)
- **V** Lateral Force (Kilopound-Force)
- **V_B** Basic Wind Speed (Meter per Second)
- W Total Dead Load (Kilonewton)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number) Square root function
- Measurement: Length in Foot (ft)

 Length Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Area in Square Foot (ft²)
 Area Unit Conversion
- Measurement: Pressure in Pounds per Square Foot (psf), Poundal per Square Foot (pdl/ft²)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Force in Newton (N), Kilopound-Force (kipf), Kilonewton (kN)
 - Force Unit Conversion

Check other formula lists

Roof Live Loads Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/13/2023 | 2:28:23 AM UTC

Please leave your feedback here...

