
calculatoratoz.com

unitsconverters.com

Microscopes and Telescopes Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Microscopes and Telescopes Formulas

Microscopes and Telescopes ©

Astronomical Telescope

1) Length of Astronomical Telescope
$f^{f} L_{\text {telescope }}=f_{o}+\frac{D \cdot f_{e}}{D+f_{e}}$
Open Calculator
ex $103.4483 \mathrm{~cm}=100 \mathrm{~cm}+\frac{25 \mathrm{~cm} \cdot 4 \mathrm{~cm}}{25 \mathrm{~cm}+4 \mathrm{~cm}}$
2) Length of Astronomical Telescope when Image Forms at Infinity
$f x L_{\text {telescope }}=f_{o}+f_{e}$
Open Calculator
ex $104 \mathrm{~cm}=100 \mathrm{~cm}+4 \mathrm{~cm}$
3) Magnifying Power of Astronomical Telescope when Image Forms at Infinity
$\mathrm{fx}_{\mathrm{x}} \mathrm{M}=\frac{\mathrm{f}_{\mathrm{o}}}{\mathrm{f}_{\mathrm{e}}}$
Open Calculator
ex $25=\frac{100 \mathrm{~cm}}{4 \mathrm{~cm}}$
4) Magnifying Power of Galilean Telescope when Image Forms at Infinity $\boxed{\square}$
$f \mathrm{x} M=\frac{\mathrm{f}_{\mathrm{o}}}{\mathrm{f}_{\mathrm{e}}}$
Open Calculator
ex $25=\frac{100 \mathrm{~cm}}{4 \mathrm{~cm}}$

Compound Microscope $\underbrace{\circledR}$

5) Length of Compound Microscope
f. $L=V_{0}+\frac{D \cdot f_{e}}{D+f_{e}}$

Open Calculator
ex $8.448276 \mathrm{~cm}=5 \mathrm{~cm}+\frac{25 \mathrm{~cm} \cdot 4 \mathrm{~cm}}{25 \mathrm{~cm}+4 \mathrm{~cm}}$
6) Length of Compound Microscope when Image Forms at Infinity
$f \mathrm{fx} L=\mathrm{V}_{0}+\mathrm{f}_{\mathrm{e}}$
ex $9 \mathrm{~cm}=5 \mathrm{~cm}+4 \mathrm{~cm}$
7) Magnification of Eyepiece when Image Formed at Least Distance of Distinct Vision
$f \times M_{e}=M \cdot\left(\frac{U_{0}+f_{0}}{f_{o}}\right)$

$$
\text { ex } 12.375=11 \cdot\left(\frac{12.5 \mathrm{~cm}+100 \mathrm{~cm}}{100 \mathrm{~cm}}\right)
$$

8) Magnification of Objective Lens when Image Formed at Least Distance of Distinct Vision
$f \mathbf{f x} \mathrm{M}_{\mathrm{o}}=\frac{\mathrm{M}}{1+\frac{\mathrm{D}}{\mathrm{f}_{\mathrm{e}}}}$

$$
\text { ex } 1.517241=\frac{11}{1+\frac{25 \mathrm{~cm}}{4 \mathrm{~cm}}}
$$

9) Magnifying Power of Compound Microscope
$f \times M=\left(1+\frac{D}{f_{e}}\right) \cdot \frac{V_{0}}{U_{0}}$

$$
2.9=\left(1+\frac{25 \mathrm{~cm}}{4 \mathrm{~cm}}\right) \cdot \frac{5 \mathrm{~cm}}{12.5 \mathrm{~cm}}
$$

10) Magnifying Power of Compound Microscope at Infinity

$f \times M=\frac{V_{0} \cdot D}{U_{0} \cdot f_{e}}$

$$
\mathrm{ex} 2.5=\frac{5 \mathrm{~cm} \cdot 25 \mathrm{~cm}}{12.5 \mathrm{~cm} \cdot 4 \mathrm{~cm}}
$$

Resolving Limit

11) Resolving Limit of Microscope

Open Calculator
ex $1.6 \mathrm{E}^{\wedge}-9=\frac{2.1 \mathrm{~nm}}{2 \cdot 1.333 \cdot \sin \left(30^{\circ}\right)}$
12) Resolving Limit of Telescope

$$
\begin{aligned}
& f \mathrm{RL}=1.22 \cdot \frac{\lambda}{\mathrm{a}} \\
& \mathrm{ex} 7.3 \mathrm{E}^{\wedge}-10=1.22 \cdot \frac{2.1 \mathrm{~nm}}{3.5}
\end{aligned}
$$

13) Resolving Power of Microscope

$$
\begin{aligned}
& f \mathbf{R P}=\frac{2 \cdot \mathrm{RI} \cdot \sin (\theta)}{\lambda} \\
& \operatorname{ex} 6.3 \mathrm{E}^{\wedge} 8=\frac{2 \cdot 1.333 \cdot \sin \left(30^{\circ}\right)}{2.1 \mathrm{~nm}}
\end{aligned}
$$

14) Resolving Power of Telescope
$f \mathrm{x} R=\frac{\mathrm{a}}{1.22 \cdot \lambda}$
ex $1.4 \mathrm{E}^{\wedge} 9=\frac{3.5}{1.22 \cdot 2.1 \mathrm{~nm}}$

Simple microscope

15) Focal Length of Simple Microscope when Image Forms at Least Distance of Distinct Vision

ex $2.5 \mathrm{~cm}=\frac{25 \mathrm{~cm}}{11-1}$
16) Magnifying Power of Simple Microscope
$f \mathrm{fx} \mathrm{M}=1+\frac{\mathrm{D}}{\mathrm{F}_{\text {convex lens }}}$
ex $5=1+\frac{25 \mathrm{~cm}}{6.25 \mathrm{~cm}}$
17) Magnifying Power of Simple Microscope when Image Formed at Infinity
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{M}=\frac{\mathrm{D}}{\mathrm{F}_{\text {convex lens }}}}$
ex $4=\frac{25 \mathrm{~cm}}{6.25 \mathrm{~cm}}$

Terrestrial Telescope

18) Length of Terrestrial Telescope
$f \mathrm{~L} L_{\text {telescope }}=f_{o}+4 \cdot f+\frac{D \cdot f_{e}}{D+f_{e}}$
ex $113.4483 \mathrm{~cm}=100 \mathrm{~cm}+4 \cdot 2.5 \mathrm{~cm}+\frac{25 \mathrm{~cm} \cdot 4 \mathrm{~cm}}{25 \mathrm{~cm}+4 \mathrm{~cm}}$
19) Length of Terrestrial Telescope when Image Forms at Infinity
$\mathrm{fx} \mathrm{L}_{\text {telescope }}=\mathrm{f}_{\mathrm{o}}+\mathrm{f}_{\mathrm{e}}+4 \cdot \mathrm{f}$
Open Calculator
ex $114 \mathrm{~cm}=100 \mathrm{~cm}+4 \mathrm{~cm}+4 \cdot 2.5 \mathrm{~cm}$
开
20) Magnifying Power of Terrestrial Telescope when Image Forms at Infinity
$f \times M=\frac{f_{o}}{f_{e}}$
ex $25=\frac{100 \mathrm{~cm}}{4 \mathrm{~cm}}$
21) Magnifying Power of Terrestrial Telescope when Image Forms at Least Distance of Distinct Vision
$\mathrm{fx} \mathrm{M}=\left(1+\frac{\mathrm{f}_{\mathrm{e}}}{\mathrm{D}}\right) \cdot \frac{\mathrm{f}_{\mathrm{o}}}{\mathrm{f}_{\mathrm{e}}}$
Open Calculator
ex $29=\left(1+\frac{4 \mathrm{~cm}}{25 \mathrm{~cm}}\right) \cdot \frac{100 \mathrm{~cm}}{4 \mathrm{~cm}}$

Variables Used

- a Aperture of Objective
- D Least Distance of Distinct Vision (Centimeter)
- f Focal Length of Erecting lens (Centimeter)
- $F_{\text {convex lens }}$ Focal Length of Convex Lens (Centimeter)
- $\mathbf{f}_{\mathbf{e}}$ Focal Length of Eyepiece (Centimeter)
- $\mathbf{f}_{\mathbf{o}}$ Focal Length of Objective (Centimeter)
- L Length of Microscope (Centimeter)
- Ltelescope Length of Telescope (Centimeter)
- M Magnifying Power
- $\mathbf{M}_{\mathbf{e}}$ Magnification of Eyepiece
- $\mathbf{M}_{\mathbf{o}}$ Magnification of Objective Lens
- RI Refractive Index
- RL Resolving Limit
- RP Resolving Power
- \mathbf{U}_{0} Object Distance (Centimeter)
- \mathbf{V}_{0} Distance between Two Lens (Centimeter)
- $\boldsymbol{\theta}$ Theta (Degree)
- $\boldsymbol{\lambda}$ Wavelength (Nanometer)

Constants, Functions, Measurements used

- Function: sin, $\sin ($ Angle)

Trigonometric sine function

- Measurement: Length in Centimeter (cm)

Length Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Wavelength in Nanometer (nm)

Wavelength Unit Conversion

Check other formula lists

- Current Electricity Formulas
- Elasticity \& Simple Harmonic Motion(SHM) Formulas
- Gravitation Formulas
- Microscopes and Telescopes Formulas
- Optics Formulas
- Theory of Elasticity Formulas
- Tribology Formulas
- Wave Optics Formulas
- Waves And Sound Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

