
calculatoratoz.com

0

Loss due to Elastic Shortening Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 22 Loss due to Elastic Shortening Formulas

Loss due to Elastic Shortening

Post-Tensioned Members

1) Area of Concrete Section given Prestress Drop
$f_{\mathrm{x}} \mathrm{A}_{\mathrm{c}}=\mathrm{m}_{\text {Elastic }} \cdot \frac{\mathrm{P}_{\mathrm{B}}}{\Delta \mathrm{f}_{\mathrm{p}}}$
Open Calculator
$\mathrm{ex} 12 \mathrm{~m}^{2}=0.6 \cdot \frac{200 \mathrm{kN}}{10 \mathrm{MPa}}$
2) Average Stress for Parabolic Tendons
$f_{\mathrm{x}}^{\mathrm{x}} \mathrm{f}_{\mathrm{c}, \text { avg }}=\mathrm{f}_{\mathrm{c} 1}+\frac{2}{3} \cdot\left(\mathrm{f}_{\mathrm{c} 2}-\mathrm{f}_{\mathrm{c} 1}\right)$
Open Calculator
ex $10.202 \mathrm{MPa}=10.006 \mathrm{MPa}+\frac{2}{3} \cdot(10.3 \mathrm{MPa}-10.006 \mathrm{MPa})$
3) Change in Eccentricity of Tendon A due to Parabolic Shape
$f \times \Delta \mathrm{e}_{\mathrm{A}}=\mathrm{e}_{\mathrm{A} 2}-\mathrm{e}_{\mathrm{A} 1}$
ex $9.981 \mathrm{~mm}=20.001 \mathrm{~mm}-10.02 \mathrm{~mm}$
4) Change in Eccentricity of Tendon B due to Parabolic Shape
$f_{\mathrm{x}} \Delta \mathrm{e}_{\mathrm{B}}=\mathrm{e}_{\mathrm{B} 2}-\mathrm{e}_{\mathrm{B} 1}$
ex $10.07 \mathrm{~mm}=20.1 \mathrm{~mm}-10.03 \mathrm{~mm}$
5) Component of Strain at Level of First Tendon due to Bending

ex $0.029412=\frac{0.3 m}{10.2 m}$
6) Prestress Drop
$f \mathrm{f} \Delta \mathrm{f}_{\mathrm{p}}=\mathrm{E}_{\mathrm{s}} \cdot \Delta \varepsilon_{\mathrm{p}}$
$\mathrm{ex} 10 \mathrm{MPa}=200000 \mathrm{MPa} \cdot 0.00005$
7) Prestress Drop given Modular Ratio
$\mathrm{fx} \Delta \mathrm{f}_{\mathrm{p}}=\mathrm{m}_{\text {Elastic }} \cdot \mathrm{f}_{\text {concrete }}$
Open Calculatore
ex $9.96 \mathrm{MPa}=0.6 \cdot 16.6 \mathrm{MPa}$
8) Prestress Drop given Strain due to Bending and Compression in Two Parabolic Tendons
$\mathrm{fx}_{\mathrm{x}} \Delta \mathrm{f}_{\mathrm{p}}=\mathrm{E}_{\mathrm{s}} \cdot\left(\varepsilon_{\mathrm{c} 1}+\varepsilon_{\mathrm{c} 2}\right)$
ex $106000 \mathrm{MPa}=200000 \mathrm{MPa} \cdot(0.5+0.03)$
9) Prestress Drop given Stress in concrete at Same Level due to Prestressing Force
$f \times \Delta f_{p}=E_{s} \cdot \frac{f_{\text {concrete }}}{E_{\text {concrete }}}$
Open Calculator
ex $33200 \mathrm{MPa}=200000 \mathrm{MPa} \cdot \frac{16.6 \mathrm{MPa}}{100 \mathrm{MPa}}$
10) Prestress Drop when Two parabolic Tendons are Incorporated
$f \mathrm{x} \Delta \mathrm{f}_{\mathrm{p}}=\mathrm{E}_{\mathrm{s}} \cdot \varepsilon_{\mathrm{c}}$
Open Calculator
ex $9000 \mathrm{MPa}=200000 \mathrm{MPa} \cdot 0.045$
11) Stress in Concrete given Prestress Drop
$f_{\mathrm{x}} \mathrm{f}_{\text {concrete }}=\frac{\Delta \mathrm{f}_{\mathrm{p}}}{\mathrm{m}_{\text {Elastic }}}$
ex $16.66667 \mathrm{MPa}=\frac{10 \mathrm{MPa}}{0.6}$
12) Variation of Eccentricity of Tendon B
$f \mathrm{f} \mathrm{E}_{\mathrm{B}(\mathrm{x})}=\mathrm{e}_{\mathrm{B} 1}+\left(4 \cdot \Delta \mathrm{e}_{\mathrm{B}} \cdot \frac{\mathrm{x}}{\mathrm{L}}\right) \cdot\left(1-\left(\frac{\mathrm{x}}{\mathrm{L}}\right)\right)$
Open Calculator
ex
$10.10914 \mathrm{~mm}=10.03 \mathrm{~mm}+\left(4 \cdot 20.0 \mathrm{~mm} \cdot \frac{10.1 \mathrm{~mm}}{10.2 \mathrm{~m}}\right) \cdot\left(1-\left(\frac{10.1 \mathrm{~mm}}{10.2 \mathrm{~m}}\right)\right)$
13) Variation of Eccentricity on Tendon A
$\mathrm{fx} \mathrm{E}_{\mathrm{A}(\mathrm{x})}=\mathrm{e}_{\mathrm{A} 1}+\left(4 \cdot \Delta \mathrm{e}_{\mathrm{A}} \cdot \frac{\mathrm{x}}{\mathrm{L}}\right) \cdot\left(1-\left(\frac{\mathrm{x}}{\mathrm{L}}\right)\right)$
Open Calculator
ex

$$
10.05957 \mathrm{~mm}=10.02 \mathrm{~mm}+\left(4 \cdot 10.0 \mathrm{~mm} \cdot \frac{10.1 \mathrm{~mm}}{10.2 \mathrm{~m}}\right) \cdot\left(1-\left(\frac{10.1 \mathrm{~mm}}{10.2 \mathrm{~m}}\right)\right)
$$

Pre-Tensioned Members ©

14) Initial Prestress given Prestress after Immediate Loss
$f x P_{i}=P_{o} \cdot \frac{A_{\text {Pretension }}}{A_{\text {Pretension }}}$
Open Calculator [
$\mathrm{ex} 200 \mathrm{kN}=96000 \mathrm{kN} \cdot \frac{0.025 \mathrm{~mm}^{2}}{12 \mathrm{~mm}^{2}}$
15) Initial Strain in Steel for Known Strain due to Elastic Shortening
$f \mathrm{x} \varepsilon_{\mathrm{pi}}=\varepsilon_{\mathrm{c}}+\varepsilon_{\mathrm{po}}$
ex $0.05=0.045+0.005$
16) Modular Ratio given Prestress after Immediate Loss $\sqrt{ }$
$f \times m_{\text {Elastic }}=\Delta f_{\text {Drop }} \cdot \frac{\mathrm{A}_{\text {Pre tension }}}{\mathrm{P}_{\mathrm{o}}}$
ex $2.5=0.02 \mathrm{MPa} \cdot \frac{12 \mathrm{~mm}^{2}}{96000 \mathrm{kN}}$
17) Prestress Drop given Initial Prestress Force
$\mathrm{fx} \Delta \mathrm{f}_{\text {Drop }}=\mathrm{P}_{\mathrm{i}} \cdot \frac{\mathrm{m}_{\text {Elastic }}}{\mathrm{A}_{\text {Pretension }}}$
Open Calculator
ex $0.01044 \mathrm{MPa}=435 \mathrm{kN}$.
$\frac{0.6}{0.025 \mathrm{~mm}^{2}}$
18) Prestress Drop given Pressure after Immediate Loss

$f \mathrm{x} \Delta \mathrm{f}_{\text {Drop }}=\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{A}_{\text {Pre tension }}}\right) \cdot \mathrm{m}_{\text {Elastic }}$
ex $0.0048 \mathrm{MPa}=\left(\frac{96000 \mathrm{kN}}{12 \mathrm{~mm}^{2}}\right) \cdot 0.6$
19) Prestressing Force after Immediate Loss given Initial Prestress
$f x P_{o}=P_{i} \cdot \frac{A_{\text {Pre tension }}}{A_{\text {Pretension }}}$
Open Calculator
ex $208800 \mathrm{kN}=435 \mathrm{kN} \cdot \frac{12 \mathrm{~mm}^{2}}{0.025 \mathrm{~mm}^{2}}$
20) Residual Strain in Steel for Known Strain due to Elastic Shortening
$f \mathrm{x} \varepsilon_{\mathrm{po}}=\varepsilon_{\mathrm{pi}}-\varepsilon_{\mathrm{c}}$
ex $0.005=0.05-0.045$
21) Strain in Concrete due to Elastic Shortening
$f \mathrm{x} \varepsilon_{\mathrm{c}}=\varepsilon_{\mathrm{pi}}-\varepsilon_{\mathrm{po}}$
ex $0.045=0.05-0.005$
22) Transformed Area of Prestress Member for Known Pressure Drop
$f \times A_{\text {Pretension }}=m_{\text {Elastic }} \cdot \frac{P_{i}}{\Delta f_{\text {Drop }}}$
ex $0.01305 \mathrm{~mm}^{2}=0.6 \cdot \frac{435 \mathrm{kN}}{0.02 \mathrm{MPa}}$

Variables Used

- $\mathbf{A}_{\mathbf{c}}$ Concrete Occupied Area (Square Meter)
- APre tension Pre-Tensioned Area of Concrete (Square Millimeter)
- APretension Transformed Section Area of Prestress (Square Millimeter)
- $\mathbf{E}_{\mathbf{A}(\mathbf{x})}$ Eccentricity Variation of Tendon A (Millimeter)
- \mathbf{e}_{A1} Eccentricity at End for A (Millimeter)
- $\mathbf{e}_{\mathbf{A} 2}$ Eccentricity at Midspan for A (Millimeter)
- $E_{B(x)}$ Eccentricity Variation of Tendon B (Millimeter)
- $\mathbf{e}_{\mathrm{B} 1}$ Eccentricity at End for B (Millimeter)
- $\mathbf{e}_{\mathbf{B 2}}$ Eccentricity at Midspan B (Millimeter)
- $E_{\text {concrete }}$ Modulus of Elasticity Concrete (Megapascal)
- $\mathbf{E}_{\mathbf{s}}$ Modulus of Elasticity of Steel Reinforcement (Megapascal)
- $\mathbf{f}_{\mathbf{c}, \mathbf{a v g}}$ Average Stress (Megapascal)
- $\mathbf{f}_{\mathbf{c} 1}$ Stress at End (Megapascal)
- $\mathbf{f}_{\mathbf{c} 2}$ Stress at Midspan (Megapascal)
- $\mathbf{f}_{\text {concrete }}$ Stress in Concrete Section (Megapascal)
- L Length of Beam in Prestress (Meter)
- MElastic Modular Ratio for Elastic Shortening
- $\mathbf{P}_{\mathbf{B}}$ Prestress Force (Kilonewton)
- $\mathbf{P}_{\mathbf{i}}$ Initial Prestress Force (Kilonewton)
- $\mathbf{P}_{\mathbf{o}}$ Prestressing Force after Loss (Kilonewton)
- X Distance from Left End (Millimeter)
- $\boldsymbol{\Delta} \mathbf{e}_{\mathbf{A}}$ Change in Eccentricity at A (Millimeter)
- $\Delta \mathbf{e}_{\mathrm{B}}$ Change in Eccentricity B (Millimeter)
- $\Delta f_{\text {Drop }}$ Drop in Prestress (Megapascal)
- $\Delta \mathbf{f}_{\mathbf{p}}$ Prestress Drop (Megapascal)
- ΔL Change in Length Dimension (Meter)
- $\Delta \varepsilon_{p}$ Change in Strain
- $\varepsilon_{\mathbf{c}}$ Concrete Strain
- $\varepsilon_{\mathbf{c} 1}$ Strain due to Compression
- $\varepsilon_{\mathbf{c} 2}$ Strain due to Bending
- $\varepsilon_{\text {pi }}$ Initial Strain
- $\varepsilon_{p o}$ Residual Strain

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm), Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m^{2}), Square Millimeter (mm^{2}) Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa) Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

Check other formula lists

- Loss due to Anchorage Slip, Friction Loss and General Geometric Properties Formulas
- Loss due to Elastic Shortening Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

