



# **Sphere Formulas**

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...





### **List of 30 Sphere Formulas**

## Sphere 🛂

### Circumference of Sphere

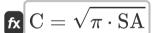
1) Circumference of Sphere

fx 
$$C=2\cdot\pi\cdot r$$

**ex** 
$$62.83185 \text{m} = 2 \cdot \pi \cdot 10 \text{m}$$

2) Circumference of Sphere given Diameter 🗗



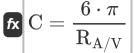

fx 
$$C = \pi \cdot D$$

Open Calculator

Open Calculator

$$\texttt{ex} \ 62.83185 \mathrm{m} = \pi \cdot 20 \mathrm{m}$$

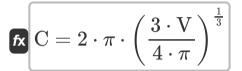
3) Circumference of Sphere given Surface Area




Open Calculator G

$$\mathbf{ex} \ 63.90673 \mathrm{m} = \sqrt{\pi \cdot 1300 \mathrm{m}^2}$$



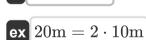

### 4) Circumference of Sphere given Surface to Volume Ratio



Open Calculator

 $extbf{ex} 62.83185 ext{m} = rac{6 \cdot \pi}{0.3 ext{m}^{-1}}$ 

## 5) Circumference of Sphere given Volume

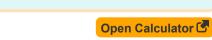



Open Calculator

 $\texttt{ex} \left[ 62.88785 \mathrm{m} = 2 \cdot \pi \cdot \left( \frac{3 \cdot 4200 \mathrm{m}^{\scriptscriptstyle 3}}{4 \cdot \pi} \right)^{\frac{1}{3}} \right]$ 

## Diameter of Sphere C

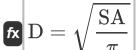
## 6) Diameter of Sphere




fx  $D=2\cdot r$ 

Open Calculator

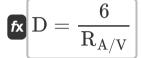
7) Diameter of Sphere given Circumference


$$D = \frac{C}{C}$$



 $19.09859 \mathrm{m} = \frac{60 \mathrm{m}}{\pi}$ 




#### 8) Diameter of Sphere given Surface Area



Open Calculator

$$=$$
  $20.34214 \mathrm{m} = \sqrt{rac{1300 \mathrm{m}^2}{\pi}}$ 

## 9) Diameter of Sphere given Surface to Volume Ratio



Open Calculator

$$20 \mathrm{m} = rac{6}{0.3 \mathrm{m}^{-1}}$$

#### 10) Diameter of Sphere given Volume

$$D = 2 \cdot \left(rac{3 \cdot V}{4 \cdot \pi}
ight)^{rac{1}{3}}$$

$$ext{ex} \ 20.01783 ext{m} = 2 \cdot \left( rac{3 \cdot 4200 ext{m}^3}{4 \cdot \pi} 
ight)^{rac{1}{3}}$$



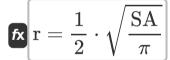
## Radius of Sphere C

### 11) Radius of Sphere given Circumference

fx 
$$\mathbf{r} = rac{\mathrm{C}}{2 \cdot \pi}$$

Open Calculator

$$= 2.549297 \text{m} = \frac{60 \text{m}}{2 \cdot \pi}$$

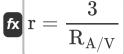

### 12) Radius of Sphere given Diameter

$$\mathbf{fx} = \frac{\mathrm{D}}{2}$$

Open Calculator

$$\boxed{10\text{m} = \frac{20\text{m}}{2}}$$

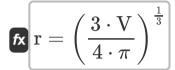
#### 13) Radius of Sphere given Surface Area




Open Calculator

$$\mathbf{ex} \ 10.17107 \mathrm{m} = rac{1}{2} \cdot \sqrt{rac{1300 \mathrm{m}^2}{\pi}}$$




#### 14) Radius of Sphere given Surface to Volume Ratio



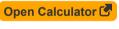
Open Calculator

$$10 \mathrm{m} = rac{3}{0.3 \mathrm{m}^{-1}}$$

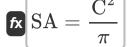
#### 15) Radius of Sphere given Volume



Open Calculator 🖸


ex 
$$10.00891 \mathrm{m} = \left( rac{3 \cdot 4200 \mathrm{m}^3}{4 \cdot \pi} 
ight)^{rac{1}{3}}$$

## Surface Area of Sphere 🗗


## 16) Surface Area of Sphere

fx 
$$\mathrm{SA} = 4 \cdot \pi \cdot \mathrm{r}^2$$

$$= 1256.637 \mathrm{m}^{\scriptscriptstyle 2} = 4 \cdot \pi \cdot \left(10\mathrm{m}\right)^{\scriptscriptstyle 2}$$



#### 17) Surface Area of Sphere given Circumference 💪



Open Calculator

 $ext{ex} 1145.916 ext{m}^2 = rac{(60 ext{m})^2}{\pi}$ 

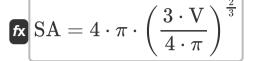
### 18) Surface Area of Sphere given Diameter

 $\left| ext{SA} = 4 \cdot \pi \cdot \left( rac{ ext{D}}{2} 
ight)^2 
ight|$ 

Open Calculator

 $ag{256.637} ext{m}^2 = 4 \cdot \pi \cdot \left(rac{20 ext{m}}{2}
ight)^2$ 

#### 19) Surface Area of Sphere given Surface to Volume Ratio


extstyle ext

Open Calculator

 $extbf{ex} 1256.637 ext{m}^2 = 36 \cdot rac{\pi}{\left(0.3 ext{m}^{-1}
ight)^2}$ 



#### 20) Surface Area of Sphere given Volume



Open Calculator 🖸

$$oxed{ex} 1258.878 \mathrm{m}^{\scriptscriptstyle 2} = 4 \cdot \pi \cdot \left(rac{3 \cdot 4200 \mathrm{m}^{\scriptscriptstyle 3}}{4 \cdot \pi}
ight)^{rac{2}{3}}$$

## Surface to Volume ratio of Sphere

### 21) Surface to Volume Ratio of Sphere



Open Calculator 🗗

$$0.3 \mathrm{m}^{-1} = rac{3}{10 \mathrm{m}}$$



$$m R_{A/V} = rac{6 \cdot \pi}{C}$$

$$oxed{ex} 0.314159 \mathrm{m}^{-_1} = rac{6 \cdot \pi}{60 \mathrm{m}}$$

#### 23) Surface to Volume Ratio of Sphere given Diameter

 $m R_{A/V} = rac{6}{D}$ 

Open Calculator 🗗

 $0.3 {
m m}^{-1} = rac{6}{20 {
m m}}$ 

### 24) Surface to Volume Ratio of Sphere given Surface Area

 $m R_{A/V} = 3 \cdot \sqrt{rac{4 \cdot \pi}{SA}}$ 

Open Calculator

ex  $0.294954 \mathrm{m}^{\scriptscriptstyle{-1}} = 3 \cdot \sqrt{\frac{4 \cdot \pi}{1300 \mathrm{m}^2}}$ 

### 25) Surface to Volume Ratio of Sphere given Volume

 $m R_{A/V} = rac{3}{\left(rac{3\cdot V}{4\cdot \pi}
ight)^{rac{1}{3}}}$ 

Open Calculator

ex  $0.299733 \mathrm{m}^{\scriptscriptstyle{-1}} = rac{3}{\left(rac{3\cdot4200 \mathrm{m}^{\scriptscriptstyle{3}}}{4\cdot\pi}
ight)^{rac{1}{3}}}$ 



## Volume of Sphere 🗗

### 26) Volume of Sphere

$$V = rac{4}{3} \cdot \pi \cdot r^3$$

Open Calculator 🖒

ex 
$$4188.79 \mathrm{m}^3 = \frac{4}{3} \cdot \pi \cdot (10 \mathrm{m})^3$$

## 27) Volume of Sphere given Circumference

$$extbf{K} V = rac{4 \cdot \pi}{3} \cdot \left(rac{ ext{C}}{2 \cdot \pi}
ight)^3$$

Open Calculator

$$= \frac{3647.563 \text{m}^3}{3} \cdot \left(\frac{60 \text{m}}{2 \cdot \pi}\right)^3$$

## 28) Volume of Sphere given Diameter

$$extbf{V} = rac{4}{3} \cdot \pi \cdot \left(rac{ ext{D}}{2}
ight)^3$$

$$oxed{ex} 4188.79 \mathrm{m}^{\scriptscriptstyle 3} = rac{4}{3} \cdot \pi \cdot \left(rac{20 \mathrm{m}}{2}
ight)^{3}$$



#### 29) Volume of Sphere given Surface Area 🗗



$$V = rac{4}{3} \cdot \pi \cdot \left(rac{\mathrm{SA}}{4 \cdot \pi}
ight)^{rac{3}{2}}$$

Open Calculator

$$=$$
  $4407.465 \mathrm{m}^{_3} = rac{4}{3} \cdot \pi \cdot \left(rac{1300 \mathrm{m}^{_2}}{4 \cdot \pi}
ight)^{rac{3}{2}}$ 

### 30) Volume of Sphere given Surface to Volume Ratio 🗗



$$V = rac{4}{3} \cdot \pi \cdot \left(rac{3}{
m R_{A/V}}
ight)^3$$



 $oxed{ex} \left| 4188.79 \mathrm{m}^{_{3}} = rac{4}{3} \cdot \pi \cdot \left( rac{3}{0.3 \mathrm{m}^{_{-1}}} 
ight)^{3} 
ight|$ 



#### Variables Used

- **C** Circumference of Sphere (*Meter*)
- **D** Diameter of Sphere (Meter)
- r Radius of Sphere (Meter)
- R<sub>A/V</sub> Surface to Volume Ratio of Sphere (1 per Meter)
- SA Surface Area of Sphere (Square Meter)
- **V** Volume of Sphere (Cubic Meter)





### Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
   Archimedes' constant
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Length in Meter (m)
  Length Unit Conversion
- Measurement: Volume in Cubic Meter (m³)

  Volume Unit Conversion
- Measurement: Area in Square Meter (m²)

  Area Unit Conversion
- Measurement: Reciprocal Length in 1 per Meter (m<sup>-1</sup>)

  Reciprocal Length Unit Conversion





#### **Check other formula lists**

- Anticube Formulas
- Antiprism Formulas
- Barrel Formulas
- Bent Cuboid Formulas
- Bicone Formulas
- Capsule Formulas
- Circular Hyperboloid Formulas
- Cuboctahedron Formulas
- Cut Cylinder Formulas
- Cut Cylindrical Shell Formulas
- Cylinder Formulas
- Cylindrical Shell Formulas
- Diagonally Halved Cylinder Formulas
- Disphenoid Formulas
- Double Calotte Formulas
- Double Point Formulas
- 🔹 Ellipsoid Formulas 💪
- Elliptic Cylinder Formulas
- Elongated Dodecahedron
   Formulas
- Flat End Cylinder Formulas
- Frustum of Cone Formulas
- Great Dodecahedron Formulas .
- Great Icosahedron Formulas
- Great Stellated Dodecahedron
   Formulas

- Half Cylinder Formulas
- Half Spherical Shell Formulas
- Half Tetrahedron Formulas
- Hemisphere Formulas 🗗
- Hollow Cuboid Formulas
- Hollow Cylinder Formulas
- Hollow Frustum Formulas
- Hollow Pyramid Formulas
- Hollow Sphere Formulas
- Ingot Formulas
- Obelisk Formulas
- Oblique Cylinder Formulas
- Oblique Prism Formulas
- Obtuse Edged Cuboid Formulas
- Oloid Formulas
- Paraboloid Formulas
- Parallelepiped Formulas
- Prismatoid Formulas
- Ramp Formulas
- Regular Bipyramid Formulas
- Rhombohedron Formulas
- Right Wedge Formulas
  - 🔻 Semi Ellipsoid Formulas 💪
- 🔹 Sharp Bent Cylinder Formulas 🖸
- Small Stellated Dodecahedron Formulas



Sphere Formulas... 15/15

- Solid of Revolution Formulas
- Sphere Formulas
- Spherical Cap Formulas
- Spherical Corner Formulas
- Spherical Ring Formulas
- Spherical Sector Formulas
- Spherical Segment Formulas
- Spherical Wedge Formulas

- Spherical Zone Formulas
- Square Pillar Formulas
- Stellated Octahedron Formulas
- Trirectangular Tetrahedron
   Formulas
- Truncated Rhombohedron
   Formulas

Feel free to SHARE this document with your friends!

#### PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/17/2023 | 7:13:14 AM UTC

Please leave your feedback here...



