calculatoratoz.com

Ultimate Strength Design of Concrete Columns Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 22 Ultimate Strength Design of Concrete Columns Formulas

Ultimate Strength Design of Concrete Columns

1) 28-day Concrete Compressive Strength given Column Ultimate Strength
$\mathrm{fx} \mathrm{f}^{\prime}{ }_{\mathrm{c}}=\frac{\mathrm{P}_{0}-\mathrm{f}_{\mathrm{y}} \cdot \mathrm{A}_{\mathrm{st}}}{0.85 \cdot\left(\mathrm{~A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)}$
ex $55 \mathrm{MPa}=\frac{2965.5 \mathrm{MPa}-250.0 \mathrm{MPa} \cdot 7 \mathrm{~mm}^{2}}{0.85 \cdot\left(33 \mathrm{~mm}^{2}-7 \mathrm{~mm}^{2}\right)}$
2) Axial Load Capacity of Short Rectangular Members
$f \mathrm{f} \mathrm{P}_{\mathrm{u}}=\Phi \cdot\left(\left(.85 \cdot \mathrm{f}^{\prime}{ }_{\mathrm{c}} \cdot \mathrm{b} \cdot \mathrm{a}\right)+\left(\mathrm{A}^{\prime}{ }_{\mathrm{s}} \cdot \mathrm{f}_{\mathrm{y}}\right)-\left(\mathrm{A}_{\mathrm{s}} \cdot \mathrm{f}_{\mathrm{s}}\right)\right)$
ex $680.0021 \mathrm{~N}=0.850 \cdot\left((.85 \cdot 55.0 \mathrm{MPa} \cdot 5 \mathrm{~mm} \cdot 10.5 \mathrm{~mm})+\left(20.0 \mathrm{~mm}^{2} \cdot 250.0 \mathrm{MPa}\right)-\left(15 \mathrm{~mm}^{2} \cdot 280 \mathrm{MPa}\right)\right)$
3) Balanced Moment given Load and Eccentricity
f. $\mathrm{M}_{\mathrm{b}}=\mathrm{e} \cdot \mathrm{P}_{\mathrm{b}}$
ex $3.5 \mathrm{~N}^{*} \mathrm{~m}=35 \mathrm{~mm} \cdot 100 \mathrm{~N}$
4) Column Ultimate Strength with Zero Eccentricity of Load \simeq
$f \mathbf{x} \mathrm{P}_{0}=0.85 \cdot \mathrm{f}_{\mathrm{c}} \cdot\left(\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)+\mathrm{f}_{\mathrm{y}} \cdot \mathrm{A}_{\mathrm{st}}$
ex $2965.5 \mathrm{MPa}=0.85 \cdot 55.0 \mathrm{MPa} \cdot\left(33 \mathrm{~mm}^{2}-7 \mathrm{~mm}^{2}\right)+250.0 \mathrm{MPa} \cdot 7 \mathrm{~mm}^{2}$
5) Compressive Reinforcement Area given Axial-Load Capacity of Short Rectangular Members
$f \mathrm{f} \mathrm{A}^{\prime}{ }_{\mathrm{s}}=\frac{\left(\frac{\mathrm{P}_{\mathrm{u}}}{\Phi}\right)-\left(.85 \cdot \mathrm{f}^{\prime}{ }_{\mathrm{c}} \cdot \mathrm{b} \cdot \mathrm{a}\right)+\left(\mathrm{A}_{\mathrm{s}} \cdot \mathrm{f}_{\mathrm{s}}\right)}{\mathrm{f}_{\mathrm{y}}}$
ex $16.79999 \mathrm{~mm}^{2}=\frac{\left(\frac{680 \mathrm{~N}}{0.850}\right)-(.85 \cdot 55.0 \mathrm{MPa} \cdot 5 \mathrm{~mm} \cdot 10.5 \mathrm{~mm})+\left(15 \mathrm{~mm}^{2} \cdot 280 \mathrm{MPa}\right)}{250.0 \mathrm{MPa}}$
6) Tensile Stress in Steel for Axial-Load Capacity of Short Rectangular Members
$\mathrm{fx}_{\mathrm{x}} \mathrm{f}_{\mathrm{s}}=\frac{\left(.85 \cdot \mathrm{f}^{\prime}{ }_{\mathrm{c}} \cdot \mathrm{b} \cdot \mathrm{a}\right)+\left(\mathrm{A}^{\prime}{ }_{\mathrm{s}} \cdot \mathrm{f}_{\mathrm{y}}\right)-\left(\frac{\mathrm{P}_{\mathrm{u}}}{\Phi}\right)}{\mathrm{A}_{\mathrm{s}}}$
ex $443.625 \mathrm{MPa}=\frac{(.85 \cdot 55.0 \mathrm{MPa} \cdot 5 \mathrm{~mm} \cdot 10.5 \mathrm{~mm})+\left(20.0 \mathrm{~mm}^{2} \cdot 250.0 \mathrm{MPa}\right)-\left(\frac{680 \mathrm{~N}}{0.850}\right)}{15 \mathrm{~mm}^{2}}$
7) Tension Reinforcement Area for Axial-Load Capacity of Short Rectangular Members
$f \mathrm{fx} \mathrm{A}_{\mathrm{s}}=\frac{\left(0.85 \cdot \mathrm{f}^{\prime}{ }_{\mathrm{c}} \cdot \mathrm{b} \cdot \mathrm{a}\right)+\left(\mathrm{A}_{\mathrm{s}} \cdot \mathrm{f}_{\mathrm{y}}\right)-\left(\frac{\mathrm{P}_{\mathrm{u}}}{\Phi}\right)}{\mathrm{f}_{\mathrm{s}}}$
ex
$23.76562 \mathrm{~mm}^{2}=\frac{(0.85 \cdot 55.0 \mathrm{MPa} \cdot 5 \mathrm{~mm} \cdot 10.5 \mathrm{~mm})+\left(20.0 \mathrm{~mm}^{2} \cdot 250.0 \mathrm{MPa}\right)-\left(\frac{680 \mathrm{~N}}{0.850}\right)}{280 \mathrm{MPa}}$
8) Ultimate Strength for Symmetrical Reinforcement
$P_{u}=0.85 \cdot \mathrm{f}^{\prime}{ }_{\mathrm{c}} \cdot \mathrm{b} \cdot \mathrm{d} \cdot \mathrm{Phi} \cdot\left((-\mathrm{Rho})+1-\left(\frac{\mathrm{e}^{\prime}}{\mathrm{d}}\right)+\sqrt{\left(\left(1-\left(\frac{\mathrm{e}^{\prime}}{\mathrm{d}}\right)\right)^{2}\right)+2 \cdot \operatorname{Rho} \cdot((\mathrm{~m}}\right.$
ex
$670.0779 \mathrm{~N}=0.85 \cdot 55.0 \mathrm{MPa} \cdot 5 \mathrm{~mm} \cdot 20 \mathrm{~mm} \cdot 0.85 \cdot\left((-0.5)+1-\left(\frac{35 \mathrm{~mm}}{20 \mathrm{~mm}}\right)+\sqrt{\left(\left(1-\left(\frac{35 \mathrm{~mm}}{20 \mathrm{~mm}}\right)\right)^{2}\right)}+\right.$
9) Yield Strength of Reinforcing Steel using Column Ultimate Strength
$f \mathbf{f x} \mathrm{f}_{\mathrm{y}}=\frac{\mathrm{P}_{0}-0.85 \cdot \mathrm{f}^{\prime}{ }_{\mathrm{c}} \cdot\left(\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)}{\mathrm{A}_{\mathrm{st}}}$
ex $250 \mathrm{MPa}=\frac{2965.5 \mathrm{MPa}-0.85 \cdot 55.0 \mathrm{MPa} \cdot\left(33 \mathrm{~mm}^{2}-7 \mathrm{~mm}^{2}\right)}{7 \mathrm{~mm}^{2}}$

Circular Columns 둔

10) Eccentricity for Balanced Condition for Short, Circular Members
$\mathrm{fx} \mathrm{e}_{\mathrm{b}}=\left(0.24-0.39 \cdot R h o^{\prime} \cdot \mathrm{m}\right) \cdot \mathrm{D}$
ex $24.9 \mathrm{~mm}=(0.24-0.39 \cdot 0.9 \cdot 0.4) \cdot 250 \mathrm{~mm}$
11) Ultimate Strength for Short, Circular Members when Controlled by Tension
$\mathrm{P}_{\mathrm{u}}=0.85 \cdot \mathrm{f}^{\prime}{ }_{\mathrm{c}} \cdot\left(\mathrm{D}^{2}\right) \cdot \Phi \cdot\left(\sqrt{\left(\left(\left(0.85 \cdot \frac{\mathrm{e}}{\mathrm{D}}\right)-0.38\right)^{2}\right)+\left(\mathrm{Rho} \cdot \mathrm{m} \cdot \frac{\mathrm{D}_{\mathrm{b}}}{2.5 \cdot \mathrm{D}}\right)}-((0.85\right.$
ex
$1.3 \mathrm{E}^{\wedge} 6 \mathrm{~N}=0.85 \cdot 55.0 \mathrm{MPa} \cdot\left((250 \mathrm{~mm})^{2}\right) \cdot 0.850 \cdot\left(\sqrt{\left(\left(\left(0.85 \cdot \frac{35 \mathrm{~mm}}{250 \mathrm{~mm}}\right)-0.38\right)^{2}\right)+\left(0.9 \cdot 0.4 \cdot \frac{12 \mathrm{r}}{2.5 \cdot 2}\right.}\right.$
12) Ultimate Strength for Short, Circular Members when Governed by Compression
$f x P_{u}=\Phi \cdot\left(\left(A_{s t} \cdot \frac{f_{y}}{\left(3 \cdot \frac{e}{D_{b}}\right)+1}\right)+\left(A_{g} \cdot \frac{f^{\prime}{ }_{c}}{9.6 \cdot \frac{D_{e}}{\left(0.8 \cdot D+0.67 \cdot D_{b}\right)^{2}}+1.18}\right)\right)$
ex $0.00018 \mathrm{~N}=0.850 \cdot\left(\left(7 \mathrm{~mm}^{2} \cdot \frac{250.0 \mathrm{MPa}}{\left(3 \cdot \frac{35 \mathrm{~mm}}{12 \mathrm{~mm}}\right)+1}\right)+\left(33 \mathrm{~mm}^{2} \cdot \frac{55.0 \mathrm{MPa}}{9.6 \cdot \frac{0.25 \mathrm{~m}}{(0.8 \cdot 250 \mathrm{~mm}+0.67 \cdot 12 \mathrm{~mm})^{2}}+1.18}\right)\right)$

Column Strength when Compression Governs

13) Ultimate Strength for No Compression Reinforcement
$\mathrm{P}_{\mathrm{u}}=0.85 \cdot \mathrm{f}^{\prime}{ }_{\mathrm{c}} \cdot \mathrm{b} \cdot \mathrm{d} \cdot \operatorname{Phi} \cdot\left((-\mathrm{Rho} \cdot \mathrm{m})+1-\left(\frac{\mathrm{e}^{\prime}}{\mathrm{d}}\right)+\sqrt{\left(\left(1-\left(\frac{\mathrm{e}^{\prime}}{\mathrm{d}}\right)\right)^{2}\right)+2 \cdot(\text { Rho } \cdot}\right.$
$689.8837 \mathrm{~N}=0.85 \cdot 55.0 \mathrm{MPa} \cdot 5 \mathrm{~mm} \cdot 20 \mathrm{~mm} \cdot 0.85 \cdot\left((-0.5 \cdot 0.4)+1-\left(\frac{35 \mathrm{~mm}}{20 \mathrm{~mm}}\right)+\sqrt{\left(\left(1-\left(\frac{35 \mathrm{~mm}}{20 \mathrm{~mm}}\right)\right)^{2}\right.}\right.$
14) Ultimate Strength for Symmetrical Reinforcement in Single Layers
$f \times P_{u}=\operatorname{Phi} \cdot\left(\left(A_{s}^{\prime} \cdot \frac{f_{y}}{\left(\frac{e}{d}\right)-d^{\prime}+0.5}\right)+\left(b \cdot L \cdot \frac{f_{c}^{\prime}}{\left(3 \cdot L \cdot \frac{e}{d^{2}}\right)+1.18}\right)\right)$
ex
$889.1433 \mathrm{~N}=0.85 \cdot\left(\left(20.0 \mathrm{~mm}^{2} \cdot \frac{250.0 \mathrm{MPa}}{\left(\frac{35 \mathrm{~mm}}{20 \mathrm{~mm}}\right)-10 \mathrm{~mm}+0.5}\right)+\left(5 \mathrm{~mm} \cdot 3000 \mathrm{~mm} \cdot \frac{55.0 \mathrm{MPa}}{\left(3 \cdot 3000 \mathrm{~mm} \cdot \frac{35 \mathrm{~mm}}{(2 \mathrm{~mm})^{2}}\right)+}\right.\right.$

Short Columns

15) Ultimate Strength for Short, Square Members when Controlled by Tension
$f x$
$\mathrm{P}_{\mathrm{u}}=0.85 \cdot \mathrm{~b} \cdot \mathrm{~L} \cdot \mathrm{f}^{\prime}{ }_{\mathrm{c}} \cdot \Phi \cdot\left(\left(\sqrt{\left(\left(\left(\frac{\mathrm{e}}{\mathrm{L}}\right)-0.5\right)^{2}\right)+\left(0.67 \cdot\left(\frac{\mathrm{D}_{\mathrm{b}}}{\mathrm{L}}\right) \cdot \mathrm{Rho} \cdot \mathrm{m}\right)}\right)-\left(\left(\frac{\mathrm{e}}{\mathrm{L}}{ }^{\sqrt{\prime}}\right.\right.\right.$
ex
$582742.6 \mathrm{~N}=0.85 \cdot 5 \mathrm{~mm} \cdot 3000 \mathrm{~mm} \cdot 55.0 \mathrm{MPa} \cdot 0.850 \cdot\left(\sqrt{\left(\left(\left(\frac{35 \mathrm{~mm}}{3000 \mathrm{~mm}}\right)-0.5\right)^{2}\right)+\left(0.67 \cdot\left(\frac{12 \mathrm{~mm}}{3000 \mathrm{~mm}}\right.\right.}\right.$
16) Ultimate Strength for Short, Square Members when Governed by Compression
$P_{u}=\Phi \cdot\left(\left(A_{s t} \cdot \frac{f_{y}}{\left(3 \cdot \frac{e}{D_{b}}\right)+1}\right)+\left(A_{g} \cdot \frac{f_{c}}{\left(12 \cdot L \cdot \frac{e}{\left(L+0.67 \cdot D_{b}\right)^{2}}\right)+1.18}\right)\right)$
ex
$1321.976 \mathrm{~N}=0.850 \cdot\left(\left(7 \mathrm{~mm}^{2} \cdot \frac{250.0 \mathrm{MPa}}{\left(3 \cdot \frac{35 \mathrm{~mm}}{12 \mathrm{~mm}}\right)+1}\right)+\left(33 \mathrm{~mm}^{2} \cdot \frac{55.0 \mathrm{MPa}}{\left(12 \cdot 3000 \mathrm{~mm} \cdot \frac{35 \mathrm{~mm}}{(3000 \mathrm{~mm}+0.67 \cdot 12 \mathrm{~mm})^{2}}\right)+1.18}\right)\right.$

Slender Columns ©

17) Axial Load Capacity of Slender Columns
fx $\mathrm{P}_{\mathrm{u}}=\frac{\mathrm{M}_{\mathrm{c}}}{\mathrm{e}}$
ex $680 \mathrm{~N}=\frac{23.8 \mathrm{~N}^{*} \mathrm{~m}}{35 \mathrm{~mm}}$
18) Eccentricity of Slender Columns
$\mathrm{fx} \mathrm{e}=\frac{\mathrm{M}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{u}}}$
ex $35 \mathrm{~mm}=\frac{23.8 \mathrm{~N}^{*} \mathrm{~m}}{680 \mathrm{~N}}$
19) Magnified Moment given Eccentricity of Slender Columns
fx $\mathrm{M}_{\mathrm{c}}=\mathrm{e} \cdot \mathrm{P}_{\mathrm{u}}$
ex $23.8 \mathrm{~N}^{*} \mathrm{~m}=35 \mathrm{~mm} \cdot 680 \mathrm{~N}$

Wind Pressure

20) Height given Wind Pressure
$\mathrm{fx} \mathrm{L}=\frac{\mathrm{p}}{\mathrm{W}_{\text {Column }}}$
ex $3000 \mathrm{~mm}=\frac{72 \mathrm{~Pa}}{24 \mathrm{kN} / \mathrm{m}^{3}}$
21) Pressure Walls and Pillars subjected to Wind Pressure
$f \mathrm{fx}=\left(\mathrm{W}_{\text {Column }} \cdot \mathrm{L}\right)$
ex $72 \mathrm{~Pa}=\left(24 \mathrm{kN} / \mathrm{m}^{3} \cdot 3000 \mathrm{~mm}\right)$
22) Unit Weight of Material given Wind Pressure
f. $W_{\text {Column }}=\frac{p}{L}$
ex $24 \mathrm{kN} / \mathrm{m}^{3}=\frac{72 \mathrm{~Pa}}{3000 \mathrm{~mm}}$

Variables Used

- a Depth Rectangular Compressive Stress (Millimeter)
- $\mathbf{A}_{\mathbf{g}}$ Gross Area of Column (Square Millimeter)
- $\mathbf{A}_{\mathbf{s}}$ Area of Tension Reinforcement (Square Millimeter)
- $\mathbf{A}_{\mathbf{s}}$ Area of Compressive Reinforcement (Square Millimeter)
- $\mathbf{A}_{\mathbf{s t}}$ Area of Steel Reinforcement (Square Millimeter)
- b Width of Compression Face (Millimeter)
- d Distance from Compression to Tensile Reinforcement (Millimeter)
- d' Distance from Compression to Centroid Reinforcment (Millimeter)
- D Overall Diameter of Section (Millimeter)
- $\mathbf{D}_{\mathbf{b}}$ Bar Diameter (Millimeter)
- $\mathbf{D}_{\mathbf{e}}$ Diameter at Eccentricity (Meter)
- e Eccentricity of Column (Millimeter)
- e' Eccentricity by Method of Frame Analysis (Millimeter)
- $\mathbf{e}_{\mathbf{b}}$ Eccentricity with respect to Plastic Load (Millimeter)
- \mathbf{f}^{\prime} c 28 -Day Compressive Strength of Concrete (Megapascal)
- $\mathbf{f}_{\mathbf{s}}$ Steel Tensile Stress (Megapascal)
- $\mathbf{f}_{\mathbf{y}}$ Yield Strength of Reinforcing Steel (Megapascal)
- L Effective Length of Column (Millimeter)
- m Force Ratio of Strengths of Reinforcements
- $\mathbf{M}_{\mathbf{b}}$ Balanced Moment (Newton Meter)
- $\mathbf{M}_{\mathbf{c}}$ Magnified Moment (Newton Meter)
- p Columns Pressure (Pascal)
- \mathbf{P}_{0} Column Ultimate Strength (Megapascal)
- $\mathbf{P}_{\mathbf{b}}$ Load Balanced Condition (Newton)
- $\mathbf{P}_{\mathbf{u}}$ Axial Load Capacity (Newton)
- Phi Capacity Reduction Factor
- Rho Area Ratio of Tensile Reinforcement
- Rho' Area Ratio of Gross Area to Steel Area
- W Column Unit weight of RCC Column (Kilonewton per Cubic Meter)
- Ф Resistance Factor

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm), Meter (m)

Length Unit Conversion

- Measurement: Area in Square Millimeter $\left(\mathrm{mm}^{2}\right)$

Area Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Moment of Force in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$)

Moment of Force Unit Conversion

- Measurement: Specific Weight in Kilonewton per Cubic Meter ($\mathrm{kN} / \mathrm{m}^{3}$)

Specific Weight Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Allowable Design for Column Formulas
- Column Base Plate Design Formulas
- Columns of Special Materials Formulas
- Eccentric Loads on Columns Formulas
- Elastic Flexural Buckling of Columns Formulas \longleftarrow
- Short Axially Loaded Columns with Helical Ties Formulas
- Ultimate Strength Design of Concrete Columns Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

