unitsconverters.com

Structural Analysis of Beams Formulas

Calculators!

Examples!

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here..

List of 26 Structural Analysis of Beams Formulas

Structural Analysis of Beams ©

1) Area to Maintain Stress as Wholly Compressive given Eccentricity
$f \mathrm{x} A=\frac{\mathrm{Z}}{\mathrm{e}^{\prime}}$
ex $5600 \mathrm{~mm}^{2}=\frac{1120000 \mathrm{~mm}^{3}}{200 \mathrm{~mm}}$
2) Beam Breadth of Uniform Strength for Simply Supported Beam when Load is at Centre
$\mathrm{fx} \mathrm{B}=\frac{3 \cdot \mathrm{P} \cdot \mathrm{a}}{\sigma \cdot \mathrm{d}_{\mathrm{e}}^{2}}$
ex $96.95291 \mathrm{~mm}=\frac{3 \cdot 0.15 \mathrm{kN} \cdot 21 \mathrm{~mm}}{1200 \mathrm{~Pa} \cdot(285 \mathrm{~mm})^{2}}$
3) Beam Depth of Uniform Strength for Simply Supported Beam when Load is at Centre
$f \mathrm{f} \mathrm{d}_{\mathrm{e}}=\sqrt{\frac{3 \cdot \mathrm{P} \cdot \mathrm{a}}{\mathrm{B} \cdot \sigma}}$
ex $280.6239 \mathrm{~mm}=\sqrt{\frac{3 \cdot 0.15 \mathrm{kN} \cdot 21 \mathrm{~mm}}{100.0003 \mathrm{~mm} \cdot 1200 \mathrm{~Pa}}}$
4) Breadth for Rectangular Section to Maintain Stress as Wholly Compressive
$f x t=6 \cdot e^{\prime}$
ex $1200 \mathrm{~mm}=6 \cdot 200 \mathrm{~mm}$
5) Eccentricity for Rectangular Section to maintain Stress as Wholly Compressive
$f \mathrm{f} \mathrm{e}^{\prime}=\frac{\mathrm{t}}{6}$
ex $200 \mathrm{~mm}=\frac{1200 \mathrm{~mm}}{6}$
6) Eccentricity for Solid Circular Sector to Maintain Stress as Wholly Compressive
$f \mathrm{x} \mathrm{e}^{\prime}=\frac{\Phi}{8}$
ex $95 \mathrm{~mm}=\frac{760 \mathrm{~mm}}{8}$
7) Eccentricity in Column for Hollow Circular Section when Stress at Extreme Fibre is Zero
$f \mathrm{x} \mathrm{e}^{\prime}=\frac{\mathrm{D}^{2}+\mathrm{d}_{\mathrm{i}}^{2}}{8 \cdot D}$
ex $1281.25 \mathrm{~mm}=\frac{(4000 \mathrm{~mm})^{2}+(5000 \mathrm{~mm})^{2}}{8 \cdot 4000 \mathrm{~mm}}$
8) Eccentricity to Maintain Stress as Wholly Compressive
$f \mathrm{x} \mathrm{e}^{\prime}=\frac{\mathrm{Z}}{\mathrm{A}}$
ex $200 \mathrm{~mm}=\frac{1120000 \mathrm{~mm}^{3}}{5600 \mathrm{~mm}^{2}}$
9) Loading of Beam of Uniform Strength
$f \mathrm{x}=\frac{\sigma \cdot \mathrm{B} \cdot \mathrm{d}_{\mathrm{e}}^{2}}{3 \cdot \mathrm{a}}$
ex $0.154715 \mathrm{kN}=\frac{1200 \mathrm{~Pa} \cdot 100.0003 \mathrm{~mm} \cdot(285 \mathrm{~mm})^{2}}{3 \cdot 21 \mathrm{~mm}}$
10) Section Modulus to Maintain Stress as Wholly Compressive given Eccentricity
$f \mathrm{x} Z=\mathrm{e}^{\prime} \cdot \mathrm{A}$
ex $1.1 \mathrm{E}^{\wedge} 6 \mathrm{~mm}^{3}=200 \mathrm{~mm} \cdot 5600 \mathrm{~mm}^{2}$
11) Stress of Beam of Uniform Strength
$f \mathrm{fx}=\frac{3 \cdot \mathrm{P} \cdot \mathrm{a}}{\mathrm{B} \cdot \mathrm{d}_{\mathrm{e}}^{2}}$
ex $1163.431 \mathrm{~Pa}=\frac{3 \cdot 0.15 \mathrm{kN} \cdot 21 \mathrm{~mm}}{100.0003 \mathrm{~mm} \cdot(285 \mathrm{~mm})^{2}}$

Continuous Beams

12) Absolute Value of Maximum Moment in Unbraced Beam Segment
fx M^{\prime} max $=\frac{\mathrm{M}_{\text {coeff }} \cdot\left(\left(3 \cdot \mathrm{M}_{\mathrm{A}}\right)+\left(4 \cdot \mathrm{M}_{\mathrm{B}}\right)+\left(3 \cdot \mathrm{M}_{\mathrm{C}}\right)\right)}{12.5-\left(\mathrm{M}_{\text {coeff }} \cdot 2.5\right)}$
ex $50.23317 \mathrm{~N}^{*} \mathrm{~m}=\frac{1.32 \mathrm{~N}^{*} \mathrm{~m} \cdot\left(\left(3 \cdot 30 \mathrm{~N}^{*} \mathrm{~m}\right)+\left(4 \cdot 50.02 \mathrm{~N}^{*} \mathrm{~m}\right)+\left(3 \cdot 20.01 \mathrm{~N}^{*} \mathrm{~m}\right)\right)}{12.5-\left(1.32 \mathrm{~N}^{*} \mathrm{~m} \cdot 2.5\right)}$
13) Condition for Maximum Moment in Interior Spans of Beams $\boxed{\square}$
$x^{\prime \prime}=\left(\frac{\text { Len }}{2}\right)-\left(\frac{M_{\max }}{q \cdot \text { Len }}\right)$
ex $1.499666 \mathrm{~m}=\left(\frac{3 \mathrm{~m}}{2}\right)-\left(\frac{10.03 \mathrm{~N}^{*} \mathrm{~m}}{10.0006 \mathrm{kN} / \mathrm{m} \cdot 3 \mathrm{~m}}\right)$
14) Condition for Maximum Moment in Interior Spans of Beams with Plastic Hinge
$\mathrm{x}=\left(\frac{\text { Len }}{2}\right)-\left(\frac{\mathrm{k} \cdot \mathrm{M}_{\mathrm{p}}}{\mathrm{q} \cdot \text { Len }}\right)$
ex $1.24984 \mathrm{~m}=\left(\frac{3 \mathrm{~m}}{2}\right)-\left(\frac{0.75 \cdot 10.007 \mathrm{kN} * \mathrm{~m}}{10.0006 \mathrm{kN} / \mathrm{m} \cdot 3 \mathrm{~m}}\right)$
15) Ultimate Load for Continuous Beam
$f \mathrm{fx}=\frac{4 \cdot \mathrm{M}_{\mathrm{p}} \cdot(1+\mathrm{k})}{\text { Len }}$
ex $23.34967 \mathrm{kN}=\frac{4 \cdot 10.007 \mathrm{kN} * \mathrm{~m} \cdot(1+0.75)}{3 \mathrm{~m}}$

Elastic Lateral Buckling of Beams ©

16) Absolute Value of Moment at Centerline of Unbraced Beam Segment
$\mathrm{M}_{\mathrm{B}}=\frac{\left(12.5 \cdot \mathrm{M}^{\prime} \max \right)-\left(2.5 \cdot \mathrm{M}^{\prime} \max +3 \cdot \mathrm{M}_{\mathrm{A}}+3 \cdot \mathrm{M}_{\mathrm{C}}\right)}{4}$
ex $87.5175 \mathrm{~N}^{*} \mathrm{~m}=\frac{\left(12.5 \cdot 50.01 \mathrm{~N}^{*} \mathrm{~m}\right)-\left(2.5 \cdot 50.01 \mathrm{~N}^{*} \mathrm{~m}+3 \cdot 30 \mathrm{~N}^{*} \mathrm{~m}+3 \cdot 20.01 \mathrm{~N}^{*} \mathrm{~m}\right)}{4}$
17) Absolute Value of Moment at Quarter Point of Unbraced Beam Segment

$$
\mathrm{M}_{\mathrm{A}}=\frac{\left(12.5 \cdot \mathrm{M}^{\prime} \max \right)-\left(2.5 \cdot \mathrm{M}^{\prime} \max +4 \cdot \mathrm{M}_{\mathrm{B}}+3 \cdot \mathrm{M}_{\mathrm{C}}\right)}{3}
$$

ex $79.99667 \mathrm{~N}^{*} \mathrm{~m}=\frac{\left(12.5 \cdot 50.01 \mathrm{~N}^{*} \mathrm{~m}\right)-\left(2.5 \cdot 50.01 \mathrm{~N}^{*} \mathrm{~m}+4 \cdot 50.02 \mathrm{~N}^{*} \mathrm{~m}+3 \cdot 20.01 \mathrm{~N}^{*} \mathrm{~m}\right)}{3}$
18) Absolute Value of Moment at Three-Quarter Point of Unbraced Beam Segment
$\mathrm{fx}_{\mathrm{X}} \mathrm{M}_{\mathrm{C}}=\frac{\left(12.5 \cdot \mathrm{M}^{\prime} \max \right)-\left(2.5 \cdot \mathrm{M}^{\prime} \max +4 \cdot \mathrm{M}_{\mathrm{B}}+3 \cdot \mathrm{M}_{\mathrm{A}}\right)}{3}$
ex $70.00667 \mathrm{~N}^{*} \mathrm{~m}=\frac{\left(12.5 \cdot 50.01 \mathrm{~N}^{*} \mathrm{~m}\right)-\left(2.5 \cdot 50.01 \mathrm{~N}^{*} \mathrm{~m}+4 \cdot 50.02 \mathrm{~N}^{*} \mathrm{~m}+3 \cdot 30 \mathrm{~N}^{*} \mathrm{~m}\right)}{3}$
19) Critical Bending Coefficient
$f \in \mathrm{M}_{\text {coeff }}=\frac{12.5 \cdot \mathrm{M}^{\prime} \max }{\left(2.5 \cdot \mathrm{M}^{\prime} \max \right)+\left(3 \cdot \mathrm{M}_{\mathrm{A}}\right)+\left(4 \cdot \mathrm{M}_{\mathrm{B}}\right)+\left(3 \cdot \mathrm{M}_{\mathrm{C}}\right)}$
ex $1.315679 \mathrm{~N}^{*} \mathrm{~m}=\frac{12.5 \cdot 50.01 \mathrm{~N}^{*} \mathrm{~m}}{\left(2.5 \cdot 50.01 \mathrm{~N}^{*} \mathrm{~m}\right)+\left(3 \cdot 30 \mathrm{~N}^{*} \mathrm{~m}\right)+\left(4 \cdot 50.02 \mathrm{~N}^{*} \mathrm{~m}\right)+\left(3 \cdot 20.01 \mathrm{~N}^{*} \mathrm{~m}\right)}$
20) Critical Bending Moment for Simply Supported Open Section Beam
$\mathrm{fx}_{\mathrm{M}} \mathrm{M}_{\text {cr }}=\left(\frac{\pi}{\mathrm{L}}\right) \cdot \sqrt{\mathrm{E} \cdot \mathrm{I}_{\mathrm{y}} \cdot\left((\mathrm{G} \cdot \mathrm{J})+\mathrm{E} \cdot \mathrm{C}_{\mathrm{w}} \cdot\left(\frac{\pi^{2}}{(\mathrm{~L})^{2}}\right)\right)}$
$9.802145 \mathrm{~N}^{*} \mathrm{~m}=\left(\frac{\pi}{10.04 \mathrm{~cm}}\right) \cdot \sqrt{10.01 \mathrm{MPa} \cdot 10.001 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot\left(\left(100.002 \mathrm{~N} / \mathrm{m}^{2} \cdot 10.0001\right)+10.01 \mathrm{MPa} \cdot 10.0005\right.}$
21) Critical Bending Moment for Simply Supported Rectangular Beam
$f \times \mathrm{M}_{\mathrm{Cr}(\text { Rect })}=\left(\frac{\pi}{\mathrm{Len}}\right) \cdot\left(\sqrt{\mathrm{e} \cdot \mathrm{I}_{\mathrm{y}} \cdot \mathrm{G} \cdot \mathrm{J}}\right)$
ex $740.5286 \mathrm{~N} * \mathrm{~m}=\left(\frac{\pi}{3 \mathrm{~m}}\right) \cdot\left(\sqrt{50 \mathrm{~Pa} \cdot 10.001 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 100.002 \mathrm{~N} / \mathrm{m}^{2} \cdot 10.0001}\right)$
22) Critical Bending Moment in Non-Uniform Bending
$\mathrm{fx} \mathrm{M}_{\text {cr }}^{\prime}=\left(\mathrm{M}_{\text {coeff }} \cdot \mathrm{M}_{\mathrm{cr}}\right)$
ex $13.2 \mathrm{~N}^{*} \mathrm{~m}=\left(1.32 \mathrm{~N}^{*} \mathrm{~m} \cdot 10 \mathrm{~N}^{*} \mathrm{~m}\right)$
23) Elasticity Modulus given Critical Bending Moment of Rectangular Beam
$\mathrm{fx} \mathrm{e}=\frac{\left(\mathrm{M}_{\operatorname{Cr}(\text { Rect })} \cdot \mathrm{Len}\right)^{2}}{\left(\pi^{2}\right) \cdot I_{y} \cdot \mathrm{G} \cdot \mathrm{J}}$
ex $50.06367 \mathrm{~Pa}=\frac{\left(741 \mathrm{~N}^{*} \mathrm{~m} \cdot 3 \mathrm{~m}\right)^{2}}{\left(\pi^{2}\right) \cdot 10.001 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 100.002 \mathrm{~N} / \mathrm{m}^{2} \cdot 10.0001}$
24) Minor Axis Moment of Inertia for Critical Bending Moment of Rectangular Beam
$f x I_{y}=\frac{\left(M_{C r(\text { Rect })} \cdot L e n\right)^{2}}{\left(\pi^{2}\right) \cdot \mathrm{e} \cdot \mathrm{G} \cdot \mathrm{J}}$
ex $10.01374 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\frac{\left(741 \mathrm{~N}^{*} \mathrm{~m} \cdot 3 \mathrm{~m}\right)^{2}}{\left(\pi^{2}\right) \cdot 50 \mathrm{~Pa} \cdot 100.002 \mathrm{~N} / \mathrm{m}^{2} \cdot 10.0001}$
25) Shear Elasticity Modulus for Critical Bending Moment of Rectangular Beam
$f \mathbf{f x}=\frac{\left(\mathrm{M}_{\mathrm{Cr}(\text { Rect })} \cdot \mathrm{Len}\right)^{2}}{\left(\pi^{2}\right) \cdot \mathrm{I}_{\mathrm{y}} \cdot \mathrm{e} \cdot \mathrm{J}}$
ex $100.1294 \mathrm{~N} / \mathrm{m}^{2}=\frac{\left(741 \mathrm{~N}^{*} \mathrm{~m} \cdot 3 \mathrm{~m}\right)^{2}}{\left(\pi^{2}\right) \cdot 10.001 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 50 \mathrm{~Pa} \cdot 10.0001}$
26) Unbraced Member Length given Critical Bending Moment of Rectangular Beam
$\mathbf{f x} \operatorname{Len}=\left(\frac{\pi}{\mathrm{M}_{\mathrm{Cr}(\text { Rect })}}\right) \cdot\left(\sqrt{\mathrm{e} \cdot \mathrm{I}_{\mathrm{y}} \cdot \mathrm{G} \cdot \mathrm{J}}\right)$
ex $2.998092 \mathrm{~m}=\left(\frac{\pi}{741 \mathrm{~N}^{*} \mathrm{~m}}\right) \cdot\left(\sqrt{50 \mathrm{~Pa} \cdot 10.001 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 100.002 \mathrm{~N} / \mathrm{m}^{2} \cdot 10.0001}\right)$

Variables Used

- a Distance from A end (Millimeter)
- A Area of Cross-Section (Square Millimeter)
- B Width of Beam Section (Millimeter)
- C_{w} Warping Constant (Kilogram Square Meter)
- D Outer Depth (Millimeter)
- $\mathbf{d}_{\mathbf{e}}$ Effective Depth of Beam (Millimeter)
- $\mathbf{d}_{\mathbf{i}}$ Inner Depth (Millimeter)
- e Elastic Modulus (Pascal)
- \mathbf{e} ' Eccentricity of Load (Millimeter)
- E Modulus of Elasticity (Megapascal)
- G Shear Modulus of Elasticity (Newton per Square Meter)
- $\mathbf{I}_{\mathbf{y}}$ Moment of Inertia about Minor Axis (Kilogram Square Meter)
- J Torsional Constant
- k Ratio between Plastic Moments
- L Unbraced Length of Member (Centimeter)
- Len Length of Rectangular Beam (Meter)
- $\mathbf{M}_{\mathbf{A}}$ Moment at Quarter Point (Newton Meter)
- $\mathbf{M}_{\mathbf{B}}$ Moment at Centerline (Newton Meter)
- $\mathbf{M}_{\mathbf{C}}$ Moment at Three-quarter Point (Newton Meter)
- $\mathbf{M}_{\text {coeff }}$ Bending Moment Coefficient (Newton Meter)
- $\mathbf{M}_{\mathbf{c r}}$ Critical Bending Moment (Newton Meter)
- $\mathbf{M}^{\prime}{ }_{c r}$ Non-Uniform Critical Bending Moment (Newton Meter)
- $\mathbf{M}_{\mathbf{C r}(\text { Rect })}$ Critical Bending Moment for Rectangular (Newton Meter)
- $\mathbf{M}_{\text {max }}$ Maximum Bending Moment (Newton Meter)
- $\mathbf{M}_{\mathbf{p}}$ Plastic Moment (Kilonewton Meter)
- M'max Maximum Moment (Newton Meter)
- P Point Load (Kilonewton)
- q Uniformly Distributed Load (Kilonewton per Meter)
- t Dam Thickness (Millimeter)
- U Ultimate Load (Kilonewton)
- x Distance of point where Moment is Maximum (Meter)
- X" Point of Maximum Moment (Meter)
- Z Section Modulus for Eccentric Load on Beam (Cubic Millimeter)
- $\boldsymbol{\sigma}$ Stress of Beam (Pascal)
- Φ Diameter of Circular Shaft (Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm), Meter (m), Centimeter (cm) Length Unit Conversion
- Measurement: Volume in Cubic Millimeter (mm^{3})

Volume Unit Conversion【

- Measurement: Area in Square Millimeter (mm^{2}) Area Unit Conversion
- Measurement: Pressure in Pascal (Pa), Megapascal (MPa), Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$) Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Surface Tension in Kilonewton per Meter (kN/m)

Surface Tension Unit Conversion

- Measurement: Moment of Inertia in Kilogram Square Meter ($\mathrm{kg} \cdot \mathrm{m}^{2}$)

Moment of Inertia Unit Conversion

- Measurement: Moment of Force in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$), Kilonewton Meter ($\mathrm{kN}{ }^{*} \mathrm{~m}$) Moment of Force Unit Conversion

Check other formula lists

- Eccentric Loading Formulas
- Structural Analysis of Beams Formulas $\sqrt{ }$
- Unsymmetrical Bending and Three Hinged Arches Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

