Eccentric Loading Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Eccentric Loading Formulas

Eccentric Loading

1) Critical Buckling Load given Deflection in Eccentric Loading $\boxed{\Omega}$
$f \times P_{c}=\frac{P \cdot\left(4 \cdot \mathrm{e}_{\text {load }}+\pi \cdot \delta\right)}{\delta \cdot \pi}$
ex $55.41737 \mathrm{kN}=\frac{9.99 \mathrm{kN} \cdot(4 \cdot 2.5 \mathrm{~mm}+\pi \cdot 0.7 \mathrm{~mm})}{0.7 \mathrm{~mm} \cdot \pi}$
2) Cross-Sectional Area given Radius of Gyration in Eccentric Loading
$f \mathrm{x} \mathrm{A}_{\mathrm{cs}}=\frac{\mathrm{I}}{\mathrm{k}_{\mathrm{G}}^{2}}$
ex $13.37693 \mathrm{~m}^{2}=\frac{1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{(0.29 \mathrm{~mm})^{2}}$
3) Cross-Sectional Area given Total Stress is where Load doesn't lie on Plane
$f \mathrm{fx} \mathrm{A}_{\mathrm{cs}}=\frac{\mathrm{P}}{\sigma_{\text {total }}-\left(\left(\frac{\mathrm{e}_{\mathrm{x}} \cdot P \cdot \mathrm{c}_{\mathrm{x}}}{\mathrm{I}_{\mathrm{y}}}\right)+\left(\frac{\mathrm{e}_{\mathrm{y}} \cdot \mathrm{P} \cdot \mathrm{c}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right)\right)}$
ex $13.22767 \mathrm{~m}^{2}=\frac{9.99 \mathrm{kN}}{14.8 \mathrm{~Pa}-\left(\left(\frac{4 \cdot 9.99 \mathrm{kN} \cdot 15 \mathrm{~mm}}{50 \mathrm{k} \cdot \mathrm{m}^{2}}\right)+\left(\frac{0.75 \cdot 9.99 \mathrm{kN} \cdot 14 \mathrm{~mm}}{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right)}$
4) Cross-Sectional Area given Total Unit Stress in Eccentric Loading
$f x A_{c s}=\frac{P}{f-\left(\left(P \cdot c \cdot \frac{e}{I_{\text {neutral }}}\right)\right)}$
ex $0.532035 \mathrm{~m}^{2}=\frac{9.99 \mathrm{kN}}{100 \mathrm{~Pa}-\left(\left(9.99 \mathrm{kN} \cdot 17 \mathrm{~mm} \cdot \frac{11 \mathrm{~mm}}{23 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right)}$
5) Deflection in Eccentric Loading
$\mathrm{fx} \delta=\frac{4 \cdot \mathrm{e}_{\mathrm{load}} \cdot \frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}}{\pi \cdot\left(1-\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}\right)}$
ex $0.739343 \mathrm{~mm}=\frac{4 \cdot 2.5 \mathrm{~mm} \cdot \frac{9.99 \mathrm{kN}}{53 \mathrm{kN}}}{\pi \cdot\left(1-\frac{9.99 \mathrm{kN}}{53 \mathrm{kN}}\right)}$
6) Distance from XX to outermost fiber given Total Stress where Load doesn't lie on Plane U
$f \mathrm{fx} \mathrm{c}_{\mathrm{y}}=\frac{\left(\sigma_{\text {total }}-\left(\frac{P}{\mathrm{~A}_{\mathrm{cs}}}\right)-\left(\frac{\mathrm{e}_{\mathrm{x}} \cdot P \cdot \mathrm{c}_{\mathrm{x}}}{\mathrm{I}_{\mathrm{y}}}\right)\right) \cdot \mathrm{I}_{\mathrm{x}}}{\mathrm{P} \cdot \mathrm{e}_{\mathrm{y}}}$
ex $13.90997 \mathrm{~mm}=\frac{\left(14.8 \mathrm{~Pa}-\left(\frac{9.99 \mathrm{kN}}{13 \mathrm{~m}^{2}}\right)-\left(\frac{4 \cdot 9.99 \mathrm{kN} \cdot 15 \mathrm{~mm}}{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right) \cdot 51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{9.99 \mathrm{kN} \cdot 0.75}$
7) Distance from YY to outermost fiber given Total Stress where Load doesn't lie on Plane U
$f \mathrm{fx} \mathrm{c}_{\mathrm{x}}=\left(\sigma_{\text {total }}-\left(\left(\frac{\mathrm{P}}{\mathrm{A}_{\mathrm{cs}}}\right)+\left(\frac{\mathrm{e}_{\mathrm{y}} \cdot \mathrm{P} \cdot \mathrm{c}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right)\right)\right) \cdot \frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{e}_{\mathrm{x}} \cdot \mathrm{P}}$
Open Calculator ©

ex

$14.98345 \mathrm{~mm}=\left(14.8 \mathrm{~Pa}-\left(\left(\frac{9.99 \mathrm{kN}}{13 \mathrm{~m}^{2}}\right)+\left(\frac{0.75 \cdot 9.99 \mathrm{kN} \cdot 14 \mathrm{~mm}}{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right)\right) \cdot \frac{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{4 \cdot 9.99 \mathrm{kN}}$
8) Eccentricity given Deflection in Eccentric Loading
$f \mathbf{x} \mathrm{e}_{\text {load }}=\left(\pi \cdot\left(1-\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}\right)\right) \cdot \frac{\delta}{4 \cdot \frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}}$
Open Calculator ©
ex $2.366965 \mathrm{~mm}=\left(\pi \cdot\left(1-\frac{9.99 \mathrm{kN}}{53 \mathrm{kN}}\right)\right) \cdot \frac{0.7 \mathrm{~mm}}{4 \cdot \frac{9.99 \mathrm{kN}}{53 \mathrm{kN}}}$
9) Eccentricity w.r.t axis XX given Total Stress where Load doesn't lie on Plane
$f x e_{y}=\frac{\left(\sigma_{\text {total }}-\left(\frac{P}{A_{c s}}\right)-\left(\frac{e_{x} \cdot P \cdot c_{x}}{I_{y}}\right)\right) \cdot I_{x}}{P \cdot c_{y}}$
Open Calculator ©
$\operatorname{ex} 0.745177=\frac{\left(14.8 \mathrm{~Pa}-\left(\frac{9.99 \mathrm{kN}}{13 \mathrm{~m}^{2}}\right)-\left(\frac{4 \cdot 9.99 \mathrm{kN} \cdot 15 \mathrm{~mm}}{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right) \cdot 51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{9.99 \mathrm{kN} \cdot 14 \mathrm{~mm}}$
10) Eccentricity wrt axis $Y Y$ given Total Stress where Load doesn't lie on Plane
$\mathrm{fx}_{\mathrm{x}} \mathrm{e}_{\mathrm{x}}=\frac{\left(\sigma_{\text {total }}-\left(\frac{\mathrm{P}}{\mathrm{A}_{\mathrm{cs}}}\right)-\frac{\mathrm{e}_{\mathrm{y}} \cdot P \cdot \mathrm{c}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right) \cdot \mathrm{I}_{\mathrm{y}}}{\mathrm{P} \cdot \mathrm{c}_{\mathrm{x}}}$
ex $3.995587=\frac{\left(14.8 \mathrm{~Pa}-\left(\frac{9.99 \mathrm{kN}}{13 \mathrm{~m}^{2}}\right)-\frac{0.75 \cdot 9.99 \mathrm{kN} \cdot 14 \mathrm{~mm}}{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right) \cdot 50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{9.99 \mathrm{kN} \cdot 15 \mathrm{~mm}}$
11) Load for Deflection in Eccentric Loading
$\mathrm{fx}_{\mathrm{x}}=\frac{\mathrm{P}_{\mathrm{c}} \cdot \delta \cdot \pi}{4 \cdot \mathrm{e}_{\text {load }}+\pi \cdot \delta}$
ex $9.554225 \mathrm{kN}=\frac{53 \mathrm{kN} \cdot 0.7 \mathrm{~mm} \cdot \pi}{4 \cdot 2.5 \mathrm{~mm}+\pi \cdot 0.7 \mathrm{~mm}}$
12) Moment of Inertia about $X X$ given Total Stress where Load doesn't lie on Plane
$f \mathbf{f x} \mathrm{I}_{\mathrm{x}}=\frac{\mathrm{e}_{\mathrm{y}} \cdot \mathrm{P} \cdot \mathrm{c}_{\mathrm{y}}}{\sigma_{\text {total }}-\left(\left(\frac{\mathrm{P}}{\mathrm{A}_{\mathrm{cs}}}\right)+\left(\frac{\mathrm{e}_{\mathrm{x}} \cdot \mathrm{P} \cdot \mathrm{c}_{\mathrm{x}}}{\mathrm{I}_{\mathrm{y}}}\right)\right)}$

$$
\text { ex } 51.33008 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\frac{0.75 \cdot 9.99 \mathrm{kN} \cdot 14 \mathrm{~mm}}{14.8 \mathrm{~Pa}-\left(\left(\frac{9.99 \mathrm{kN}}{13 \mathrm{~m}^{2}}\right)+\left(\frac{4 \cdot 9.99 \mathrm{kN} \cdot 15 \mathrm{~mm}}{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right)}
$$

13) Moment of Inertia about $Y Y$ given Total Stress where Load doesn't lie on Plane
$f \mathrm{fx} \mathrm{I}_{\mathrm{y}}=\frac{\mathrm{e}_{\mathrm{x}} \cdot \mathrm{P} \cdot \mathrm{c}_{\mathrm{x}}}{\sigma_{\text {total }}-\left(\left(\frac{\mathrm{P}}{\mathrm{A}_{\mathrm{cs}}}\right)+\left(\frac{\mathrm{e}_{\mathrm{y}} \cdot \mathrm{P} \cdot \mathrm{c}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right)\right)}$
ex $50.05523 \mathrm{~kg} \cdot \mathrm{~m}^{2}=$

$$
\overline{14.8 \mathrm{~Pa}-\left(\left(\frac{9.99 \mathrm{kN}}{13 \mathrm{~m}^{2}}\right)+\left(\frac{0.75 \cdot 9.99 \mathrm{kN} \cdot 14 \mathrm{~mm}}{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right)}
$$

14) Moment of Inertia given Radius of Gyration in Eccentric Loading
$f \mathrm{fx}=\left(\mathrm{k}_{\mathrm{G}}^{2}\right) \cdot \mathrm{A}_{\mathrm{cs}}$
ex $1.0933 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\left((0.29 \mathrm{~mm})^{2}\right) \cdot 13 \mathrm{~m}^{2}$
15) Moment of Inertia of Cross-Section given Total Unit Stress in Eccentric Loading
$f x I_{\text {neutral }}=\frac{P \cdot c \cdot e}{f-\left(\frac{P}{A_{c s}}\right)}$
ex $18.82597 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\frac{9.99 \mathrm{kN} \cdot 17 \mathrm{~mm} \cdot 11 \mathrm{~mm}}{100 \mathrm{~Pa}-\left(\frac{9.99 \mathrm{kN}}{13 \mathrm{~m}^{2}}\right)}$
16) Radius of Gyration in Eccentric Loading

Open Calculator
$f \mathbf{f x} \mathrm{k}_{\mathrm{G}}=\sqrt{\frac{\mathrm{I}}{\mathrm{A}_{\mathrm{cs}}}}$
ex $0.294174 \mathrm{~mm}=\sqrt{\frac{1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{13 \mathrm{~m}^{2}}}$
17) Total Stress in Eccentric Loading when Load doesn't lie on Plane
$f \mathrm{fx} \sigma_{\text {total }}=\left(\frac{\mathrm{P}}{\mathrm{A}_{\mathrm{cs}}}\right)+\left(\frac{\mathrm{e}_{\mathrm{x}} \cdot \mathrm{P} \cdot \mathrm{c}_{\mathrm{x}}}{\mathrm{I}_{\mathrm{y}}}\right)+\left(\frac{\mathrm{e}_{\mathrm{y}} \cdot \mathrm{P} \cdot \mathrm{c}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}\right)$
ex $14.81323 \mathrm{~Pa}=\left(\frac{9.99 \mathrm{kN}}{13 \mathrm{~m}^{2}}\right)+\left(\frac{4 \cdot 9.99 \mathrm{kN} \cdot 15 \mathrm{~mm}}{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)+\left(\frac{0.75 \cdot 9.99 \mathrm{kN} \cdot 14 \mathrm{~mm}}{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)$
18) Total Unit Stress in Eccentric Loading
$\mathrm{fx} \mathrm{f}=\left(\frac{\mathrm{P}}{\mathrm{A}_{\mathrm{cs}}}\right)+\left(\mathrm{P} \cdot \mathrm{c} \cdot \frac{\mathrm{e}}{\mathrm{I}_{\text {neutral }}}\right)$
ex $81.99151 \mathrm{~Pa}=\left(\frac{9.99 \mathrm{kN}}{13 \mathrm{~m}^{2}}\right)+\left(9.99 \mathrm{kN} \cdot 17 \mathrm{~mm} \cdot \frac{11 \mathrm{~mm}}{23 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)$

Variables Used

- $\mathbf{A}_{\mathbf{c s}}$ Cross-Sectional Area (Square Meter)
- c Outermost Fiber Distance (Millimeter)
- $\mathbf{c}_{\mathbf{x}}$ Distance from YY to Outermost Fiber (Millimeter)
- Cy Distance from XX to Outermost Fiber (Millimeter)
- e Distance from Load applied (Millimeter)
- $\mathbf{e}_{\text {Ioad }}$ Eccentricity of Load (Millimeter)
- $\mathbf{e}_{\mathbf{x}}$ Eccentricity with respect to Principal Axis YY
- e_{y} Eccentricity with respect to Principal Axis XX
- f Total Unit Stress (Pascal)
- I Moment of Inertia (Kilogram Square Meter)
- Ineutral Moment of Inertia about Neutral Axis (Kilogram Square Meter)
- $\mathbf{I}_{\mathbf{x}}$ Moment of Inertia about X-Axis (Kilogram Square Meter)
- Iy Moment of Inertia about Y-Axis (Kilogram Square Meter)
- $\mathbf{k}_{\mathbf{G}}$ Radius of Gyration (Millimeter)
- P Axial Load (Kilonewton)
- $\mathbf{P}_{\mathbf{c}}$ Critical Buckling Load (Kilonewton)
- $\boldsymbol{\delta}$ Deflection in Eccentric Loading (Millimeter)
- $\sigma_{\text {total }}$ Total Stress (Pascal)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Meter $\left(\mathrm{m}^{2}\right)$

Area Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Moment of Inertia in Kilogram Square Meter ($\mathrm{kg} \cdot \mathrm{m}^{2}$) Moment of Inertia Unit Conversion

Check other formula lists

- Beams Formulas
- Eccentric Loading Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

