

Beams, Columns and Other Members Design Methods Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Beams, Columns and Other Members Design Methods Formulas

Beams, Columns and Other Members Design Methods 🗗

Beams 🗗

1) Straight Beam Deflection

$$\delta = \left(rac{\mathrm{k_b}\cdot\mathrm{T_l}\cdot\left(\mathrm{l}
ight)^3}{\mathrm{E_c}\cdot\mathrm{I}}
ight) + \left(rac{\mathrm{k_s}\cdot\mathrm{T_l}\cdot\mathrm{l}}{\mathrm{G}\cdot\mathrm{A}}
ight)$$

Open Calculator 🗗

ex

$$19.92665 \text{mm} = \left(\frac{0.85 \cdot 10 \text{kN} \cdot \left(3000 \text{mm}\right)^3}{30000 \text{MPa} \cdot 3.56 \text{kg} \cdot \text{m}^2}\right) + \left(\frac{0.75 \cdot 10 \text{kN} \cdot 3000 \text{mm}}{25000 \text{MPa} \cdot 50625 \text{mm}^2}\right)$$

2) Tapered Beam Deflection for Mid-Span Concentrated Load

Open Calculator

$$\mathbf{ex} = \frac{3 \cdot 10 \mathrm{kN} \cdot 3000 \mathrm{mm}}{10 \cdot 25000 \mathrm{MPa} \cdot 305 \mathrm{mm} \cdot 285 \mathrm{mm}}$$

3) Tapered beam Deflection for Uniformly Distributed Load

$$\delta = rac{3 \cdot \mathrm{T_l} \cdot \mathrm{l}}{20 \cdot \mathrm{G} \cdot \mathrm{h} \cdot \mathrm{d}}$$

Open Calculator

Open Calculator

Open Calculator

Open Calculator

 $3 \cdot 10 \text{kN} \cdot 3000 \text{mm}$ = 2.070751mm = $\frac{1}{20 \cdot 25000$ MPa $\cdot 305$ mm $\cdot 285$ mm

Rectangular Beams with Tensile Reinforcing Only

4) Bending Moment of Beam due to Stress in Concrete

 $\mathbf{K} = \left(rac{1}{2}
ight) \cdot f_c \cdot k \cdot j \cdot b \cdot d^2$

 $\mathbf{ex} = 35.07772 \text{kN*m} = \left(\frac{1}{2}\right) \cdot 7.3 \text{MPa} \cdot 0.458 \cdot 0.847 \cdot 305 \text{mm} \cdot (285 \text{mm})^2$

- 5) Bending Moment of Beam due to Stress in Steel
- $\mathbf{K} \, \mathbf{M} = \mathbf{f}_{\mathrm{s}} \cdot \mathbf{p} \cdot \mathbf{j} \cdot \mathbf{b} \cdot \mathbf{d}^2$

 $\mathbf{ex} \ 35.18893 \, \mathrm{kN^*m} = 130 \, \mathrm{MPa} \cdot 0.0129 \cdot 0.847 \cdot 305 \, \mathrm{mm} \cdot (285 \, \mathrm{mm})^2$

- 6) Stress in Concrete using Working-Stress Design
- $\mathbf{f}_{c} = \frac{2 \cdot M}{\mathbf{k} \cdot \mathbf{i} \cdot \mathbf{b} \cdot \mathbf{d}^{2}}$ $2 \cdot 35 \text{kN*m}$
- [ex] 7.283826 MPa = --- $0.458 \cdot 0.847 \cdot 305 \text{mm} \cdot (285 \text{mm})^2$

7) Stress in Steel by Working-Stress Design

 $\mathbf{f_s} = rac{\mathbf{M}}{\mathbf{A_s \cdot j \cdot d}}$

Open Calculator

 $ext{ex} 129.3404 ext{MPa} = rac{35 ext{kN*m}}{1121 ext{mm}^2 \cdot 0.847 \cdot 285 ext{mm}}$

8) Stress in Steel using Working-Stress Design

 $\mathbf{f}_{\mathrm{s}} = rac{\mathrm{M}}{\mathrm{p}\cdot\mathrm{j}\cdot\mathrm{b}\cdot\mathrm{d}^2}$

Open Calculator

Shear and Diagonal Tension in Beams

$\mathbf{A}_{\mathrm{v}} = (\mathrm{V} - \mathrm{V}') \cdot rac{\mathrm{s}}{\mathrm{f}_{\mathrm{v}} \cdot \mathrm{d}}$

9) Cross-Sectional Area of Web Reinforcement

 $8789.474 ext{mm}^2 = (500.00 ext{N} - 495 ext{N}) \cdot rac{50.1 ext{mm}}{100 ext{MPa} \cdot 285 ext{mm}}$

Open Calculator

10) Effective Depth given Cross-Sectional Area of Web Reinforcement

$$\mathbf{f}$$
 $\mathrm{d} = rac{(\mathrm{V} - \mathrm{V'}) \cdot \mathrm{s}}{\mathrm{f_v} \cdot \mathrm{A_v}}$

Open Calculator

© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!

11) Effective Depth of Beam given Shearing Unit Stress in Reinforced Concrete Beam [7

 $\mathbf{f} \mathbf{x} d = \frac{\mathbf{V}}{\mathbf{b} \cdot \mathbf{v}}$

Open Calculator

500.00N= 285.0042mm = $\frac{1}{305$ mm $\cdot 0.005752$ MPa

12) Shear Carried by Concrete given Cross-Sectional Area of Web Reinforcement

 $V' = V - \left(\frac{A_v \cdot f_v \cdot d}{\varsigma} \right)$

Open Calculator

= $495.0099N = 500.00N - \left(\frac{8772mm^2 \cdot 100MPa \cdot 285mm}{50.1mm}\right)$

13) Shearing Unit Stress in Reinforced Concrete Beam 🗗

 $\mathbf{f} \mathbf{x} \mathbf{v} = \frac{\mathbf{V}}{\mathbf{b} \cdot \mathbf{d}}$

Open Calculator

 $oxed{ex} 0.005752 ext{MPa} = rac{500.00 ext{N}}{305 ext{mm} \cdot 285 ext{mm}}$

14) Stirrups Spacing given Cross-Sectional Area of Web Reinforcement

Open Calculator

15) Total Shear given Cross-Sectional Area of Web Reinforcement 🗗

Open Calculator

$$V = \left(rac{A_v \cdot f_v \cdot d}{s}
ight) + V'$$

$$\boxed{ 499.9901 \text{N} = \left(\frac{8772 \text{mm}^2 \cdot 100 \text{MPa} \cdot 285 \text{mm}}{50.1 \text{mm}} \right) + 495 \text{N} }$$

16) Width of Beam given Shearing Unit Stress in Reinforced Concrete Beam 🗗

Open Calculator

$$= \frac{500.00 \text{N}}{285 \text{mm} \cdot 0.005752 \text{MPa}}$$

Variables Used

- A Cross-Sectional Area of Beam (Square Millimeter)
- As Cross-Sectional Area of Tensile Reinforcing (Square Millimeter)
- A_v Cross-Sectional Area of Web Reinforcement (Square Millimeter)
- **b** Width of Beam (Millimeter)
- **d** Effective Depth of Beam (Millimeter)
- Ec Modulus of Elasticity of Concrete (Megapascal)
- **f**_c Compressive Stress in Extreme Fiber of Concrete (Megapascal)
- **f**_S Stress in Reinforcement (Megapascal)
- **f**_v Allowable Unit Stress in Web Reinforcement (*Megapascal*)
- **G** Shear Modulus (Megapascal)
- I Moment of Inertia (Kilogram Square Meter)
- | Ratio of Distance between Centroid
- k Ratio of Depth
- k_b Beam Loading Constant
- k_s Support Condition Constant
- I Beam Span (Millimeter)
- M Bending Moment (Kilonewton Meter)
- p Ratio of Cross-Sectional Area
- **S** Stirrup Spacing (Millimeter)
- T_I Total Beam Load (Kilonewton)
- V Shearing Unit Stress (Megapascal)
- V Total Shear (Newton)
- V' Shear that Concrete should carry (Newton)
- δ Deflection of Beam (Millimeter)

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²)
 Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N)
 Force Unit Conversion
- Measurement: Moment of Inertia in Kilogram Square Meter (kg·m²)
 Moment of Inertia Unit Conversion
- Measurement: Moment of Force in Kilonewton Meter (kN*m)
 Moment of Force Unit Conversion
- Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Check other formula lists

- . Beams, Columns and Other **Members Design Methods** Formulas 🔽
- **Braced and Unbraced Frames** Formulas
- Deflection Computations, Column Moments and Torsion Formulas

- Flat Plate Construction Formulas
- Mix Design, Modulus of Elasticity and Tensile Strength of Concrete Formulas C
- Working Stress Design Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/20/2023 | 5:42:17 AM UTC

Please leave your feedback here...

