

Conduction Shape Factors for Different Configurations Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Open Calculator

Open Calculator 🚰

Open Calculator

List of 21 Conduction Shape Factors for Different Configurations Formulas

Conduction Shape Factors for Different Configurations

Finite Medium

1) Conduction through Edge of Two Adjoining Walls of Equal Thickness

 $m_{S} = 0.54 \cdot L_{w}$

 $28 \text{m} = 0.54 \cdot 51.85185 \text{m}$

2) Corner of Three Walls of Equal Thickness

 $m K S = 0.15 \cdot t_w$

 $28m = 0.15 \cdot 186.66666m$

3) Eccentric Isothermal Cylinder in Cylinder of Same Length

 $\left| \mathbf{S} = rac{2 \cdot \pi \cdot \mathbf{L_c}}{a} \mathrm{cosh} \left(rac{\mathbf{D_1^2} + \mathbf{D_2^2} - 4 \cdot \mathbf{z^2}}{2 \cdot \mathbf{D_1} \cdot \mathbf{D_2}}
ight)
ight|$

 $28 \text{m} = \frac{2 \cdot \pi \cdot 4 \text{m}}{a} \text{cosh} \left(\frac{\left(5.1 \text{m}\right)^2 + \left(13.739222 \text{m}\right)^2 - 4 \cdot \left(1.89 \text{m}\right)^2}{2 \cdot 5.1 \text{m} \cdot 13.739222 \text{m}} \right)^{2}$

4) Hollow Spherical Layer

Open Calculator

5) Isothermal Cylinder at Center of Square Solid Bar of Same Length

.crigari 🗅

Open Calculator 🚰

$$ext{ex} 28 ext{m} = rac{2 \cdot \pi \cdot 4 ext{m}}{\ln \left(rac{1.08 \cdot 102.23759 ext{m}}{45 ext{m}}
ight)}$$

6) Large Plane Wall

Open Calculator

7) Long Hollow Cylindrical Layer

$$28 ext{m} = rac{2 \cdot \pi \cdot 4 ext{m}}{\ln \left(rac{13.994934 ext{m}}{5.7036 ext{m}}
ight)}$$

8) Square Flow Passage with Width to b Ratio Greater than 1.4

Open Calculator

$$28 ext{m} = rac{2 \cdot \pi \cdot 0.10 ext{m}}{0.93 \cdot \ln \left(0.948 \cdot rac{3.241843149 ext{m}}{3 ext{m}}
ight)}$$

9) Square Flow Passage with Width to b Ratio Less than 1.4

Open Calculator

$$\boxed{28 \text{m} = \frac{2 \cdot \pi \cdot 0.10 \text{m}}{0.785 \cdot \ln \left(\frac{6.173990514 \text{m}}{6 \text{m}} \right)}}$$

Infinite Medium 🗗

10) Isothermal Cylinder in Midplane of Infinite wall

11) Isothermal Ellipsoid Buried in Infinite Medium 🗗

 $extbf{S} = rac{4 \cdot \pi \cdot ext{a} \cdot \sqrt{1 - rac{ ext{b}}{ ext{a}^2}}}{a anh \left(\sqrt{1 - rac{ ext{b}}{ ext{a}^2}}
ight)}$

Open Calculator

 $28 \text{m} = \frac{4 \cdot \pi \cdot 5.745084 \text{m} \cdot \sqrt{1 - \frac{0.80 \text{m}}{(5.745084 \text{m})^2}}}{a \tanh \left(\sqrt{1 - \frac{0.80 \text{m}}{(5.745084 \text{m})^2}}\right)}$

12) Isothermal Sphere Buried in Infinite Medium

fx $S=4\cdot\pi\cdot R_{
m s}$

Open Calculator

 $\texttt{ex} \ 28 \texttt{m} = 4 \cdot \pi \cdot 2.228169 \texttt{m}$

13) Two parallel Isothermal Cylinders placed in Infinite medium

 $ext{S} = rac{2 \cdot \pi \cdot ext{L}_{ ext{c}}}{a} ext{cosh} igg(rac{4 \cdot ext{d}^2 - ext{D}_1^2 - ext{D}_2^2}{2 \cdot ext{D}_1 \cdot ext{D}_2} igg)$

Open Calculator

ex

$$28 \text{m} = \frac{2 \cdot \pi \cdot 4 \text{m}}{a} \text{cosh} \left(\frac{4 \cdot (10.1890145 \text{m})^2 - (5.1 \text{m})^2 - (13.739222 \text{m})^2}{2 \cdot 5.1 \text{m} \cdot 13.739222 \text{m}} \right)$$

Semi Infinite Medium 🛂

14) Disk Buried Parallel to Suface in Semi-Infinite Medium 🗗

Open Calculator

$$oxed{ex}28 ext{m}=4\cdot7 ext{m}$$

fx $S = 4 \cdot D_d$

15) Isothermal Cylinder Buried in Semi-Infinite Medium 🗗

Open Calculator

$$oxed{ 6.642218 m = rac{2 \cdot \pi \cdot 4 m}{\ln \left(rac{4 \cdot 494.8008429 m}{45 m}
ight) } }$$

16) Isothermal Rectangular Parallelepiped Buried in Semi-Infinite Medium 🗗

fx

$$\mathrm{S} = 1.685 \cdot \mathrm{L_{pr}} \cdot \left(\log 10 \bigg(1 + rac{\mathrm{D_{ss}}}{\mathrm{W_{pr}}} \bigg)
ight)^{-0.59} \cdot \left(rac{\mathrm{D_{ss}}}{\mathrm{H}}
ight)^{-0.078}$$

$$28 \text{m} = 1.685 \cdot 7.0479 \text{m} \cdot \left(\log 10 \left(1 + \frac{8 \text{m}}{11 \text{m}}\right)\right)^{-0.59} \cdot \left(\frac{8 \text{m}}{9 \text{m}}\right)^{-0.078}$$

17) Isothermal Sphere Buried in Semi-Infinite Medium

 $ext{S} = rac{2 \cdot \pi \cdot ext{D}_{ ext{S}}}{1 - \left(rac{0.25 \cdot ext{D}_{ ext{S}}}{ ext{d}_{ ext{s}}}
ight)}$

Open Calculator

$$28 \mathrm{m} = \frac{2 \cdot \pi \cdot 4.446327 \mathrm{m}}{1 - \left(\frac{0.25 \cdot 4.446327 \mathrm{m}}{494.8008429 \mathrm{m}}\right)}$$

18) Isothermal Sphere Buried in Semi-Infinite Medium whose Surface is Insulated

 $extbf{S} = rac{2 \cdot \pi \cdot D_{si}}{1 + rac{0.25 \cdot D_{si}}{d_s}}$

Open Calculator

$$28 \text{m} = \frac{2 \cdot \pi \cdot 4.466395 \text{m}}{1 + \frac{0.25 \cdot 4.466395 \text{m}}{494.8008429 \text{m}}}$$

19) Row of Equally Spaced Parallel Isothermal Cylinders Buried in Semiinfinite Medium

20) Thin Rectangular Plate Buried in Semi-Infinite Medium 🗗

Open Calculator

$$\mathbf{ex} = \frac{2 \cdot \pi \cdot 35.42548 \mathrm{m}}{\ln\left(rac{4 \cdot 35.42548 \mathrm{m}}{0.05 \mathrm{m}}
ight)}$$

21) Vertical Isothermal Cylinder Buried in Semi-Infinite Medium

$$28 ext{m} = rac{2 \cdot \pi \cdot 8.40313 ext{m}}{\ln \left(rac{4 \cdot 8.40313 ext{m}}{5.1 ext{m}}
ight)}$$

Variables Used

- a Semi Major Axis of Ellipse (Meter)
- A Cross-Sectional Area (Square Meter)
- **b** Semi Minor Axis of Ellipse (Meter)
- d Distance Between Centers (Meter)
- D Diameter of Cylinder (Meter)
- **D**₁ Diameter of Cylinder 1 (Meter)
- D₂ Diameter of Cylinder 2 (Meter)
- **D**_d Diameter of Disk (Meter)
- d_s Distance from Surface to Centre of Object (Meter)
- D_S Diameter of Sphere (Meter)
- D_{si} Diameter of Sphere Insulated (Meter)
- D_{SS} Distance from Surface to Surface of Object (Meter)
- **H** Height of Parallelepiped (Meter)
- I_C Length of Cylinder 1 (Meter)
- L_c Length of Cylinder (Meter)
- Lpipe Length of Pipe (Meter)
- Lplate Length of Plate (Meter)
- Lpr Length of Parallelepiped (Meter)
- L_w Length of Wall (Meter)
- r₁ Inner Radius of Cylinder (Meter)
- r₂ Outer Radius of Cylinder (Meter)
- ri Inner Radius (Meter)

- ro Outer Radius (Meter)
- R_s Radius of Sphere (Meter)
- S Conduction Shape Factor (Meter)
- S₁ Conduction Shape Factor 1 (Meter)
- S₂ Conduction Shape Factor 2 (Meter)
- t Thickness (Meter)
- tw Thickness of Wall (Meter)
- w Width of Square Bar (Meter)
- Wi1 Inner Width 1 (Meter)
- Wi2 Inner Width 2 (Meter)
- Wo1 Outer Width 1 (Meter)
- W₀₂ Outer Width 2 (Meter)
- W_{plate} Width of Plate (Meter)
- W_{pr} Width of Parallelepiped (Meter)
- Z Eccentric Distance Between Objects (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: acosh, acosh(Number)

 Hyperbolic cosine function, is a function that takes a real number as an input and returns the angle whose hyperbolic cosine is that number.
- Function: atanh, atanh(Number)
 The inverse hyperbolic tangent function returns the value whose hyperbolic tangent is a number.
- Function: cosh, cosh(Number)

 The hyperbolic cosine function is a mathematical function that is defined as the ratio of the sum of the exponential functions of x and negative x to 2.
- Function: In, In(Number)

 The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Function: log10, log10(Number)
 The common logarithm, also known as the base-10 logarithm or the decimal logarithm, is a mathematical function that is the inverse of the exponential function.
- Function: sinh, sinh(Number)
 The hyperbolic sine function, also known as the sinh function, is a
 mathematical function that is defined as the hyperbolic analogue of the sine
 function.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tanh, tanh(Number)

 The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).

- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion

Check other formula lists

- Conduction in Cylinder Formulas
- Conduction in Plane Wall Formulas
- Conduction in Sphere Formulas Transient Heat Conduction
- Conduction Shape Factors for Different Configurations

- Formulas 🛂
- Other shapes Formulas
- Steady State Heat Conduction with Heat Generation Formulas
- Transient Heat Conduction
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/20/2024 | 11:01:03 AM UTC

Please leave your feedback here...

