
calculatoratoz.com

unitsconverters.com

Conduction Shape Factors for Different Configurations Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Conduction Shape Factors for Different Configurations Formulas

Conduction Shape Factors for Different Configurations \mathbb{A}

1) Conduction through Edge of Two Adjoining Walls of Equal Thickness

$$
f \mathrm{fx}=0.54 \cdot \mathrm{~L}_{\mathrm{w}}
$$

ex $28 \mathrm{~m}=0.54 \cdot 51.85185 \mathrm{~m}$
2) Corner of Three Walls of Equal Thickness
$f x S=0.15 \cdot t_{w}$
Open Calculator
ex
$28 \mathrm{~m}=0.15 \cdot 186.66666 \mathrm{~m}$
3) Eccentric Isothermal Cylinder in Cylinder of Same Length
$f \mathrm{x} S=\frac{2 \cdot \pi \cdot \mathrm{~L}_{\mathrm{c}}}{a} \cosh \left(\frac{\mathrm{D}_{1}^{2}+\mathrm{D}_{2}^{2}-4 \cdot \mathrm{z}^{2}}{2 \cdot \mathrm{D}_{1} \cdot \mathrm{D}_{2}}\right)$
Open Calculator
ex $28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 4 \mathrm{~m}}{a} \cosh \left(\frac{(5.1 \mathrm{~m})^{2}+(13.739222 \mathrm{~m})^{2}-4 \cdot(1.89 \mathrm{~m})^{2}}{2 \cdot 5.1 \mathrm{~m} \cdot 13.739222 \mathrm{~m}}\right)$
4) Hollow Spherical Layer
$\mathrm{fx}_{\mathrm{x}} \mathrm{S}=\frac{4 \cdot \pi \cdot \mathrm{r}_{\mathrm{i}} \cdot \mathrm{r}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}}$
Open Calculatore
ex $28.00001 \mathrm{~m}=\frac{4 \cdot \pi \cdot 2 \mathrm{~m} \cdot 19.53078889 \mathrm{~m}}{19.53078889 \mathrm{~m}-2 \mathrm{~m}}$
5) Isothermal Cylinder at Center of Square Solid Bar of Same Length
$\mathrm{fx}_{\mathrm{x}} \mathrm{S}=\frac{2 \cdot \pi \cdot \mathrm{~L}_{\mathrm{c}}}{\ln \left(\frac{1.08 \cdot \mathrm{w}}{\mathrm{D}}\right)}$
ex $28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 4 \mathrm{~m}}{\ln \left(\frac{1.08 \cdot 102.23759 \mathrm{~m}}{45 \mathrm{~m}}\right)}$
6) Large Plane Wall
$f \mathrm{fx}=\frac{\mathrm{A}}{\mathrm{t}}$
Open Calculator
ex $28 \mathrm{~m}=\frac{105 \mathrm{~m}^{2}}{3.75 \mathrm{~m}}$

7) Long Hollow Cylindrical Layer

$\mathrm{fx} S=\frac{2 \cdot \pi \cdot \mathrm{~L}_{\mathrm{c}}}{\ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}$
$\mathrm{ex} 28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 4 \mathrm{~m}}{\ln \left(\frac{13.994934 \mathrm{~m}}{5.7036 \mathrm{~m}}\right)}$
8) Square Flow Passage with Width to b Ratio Greater than 1.4
$f \mathrm{x}=\frac{2 \cdot \pi \cdot \mathrm{~L}_{\text {pipe }}}{0.93 \cdot \ln \left(0.948 \cdot \frac{\mathrm{w}_{\mathrm{ol}}}{\mathrm{w}_{\mathrm{i} 1}}\right)}$
$\mathbf{e x} 28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 0.10 \mathrm{~m}}{0.93 \cdot \ln \left(0.948 \cdot \frac{3.241843149 \mathrm{~m}}{3 \mathrm{~m}}\right)}$
9) Square Flow Passage with Width to b Ratio Less than 1.4
$\mathrm{fx} \mathrm{S}=\frac{2 \cdot \pi \cdot \mathrm{~L}_{\text {pipe }}}{0.785 \cdot \ln \left(\frac{\mathrm{w}_{\mathrm{o} 2}}{\mathrm{w}_{\mathrm{i} 2}}\right)}$
$\mathrm{ex} 28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 0.10 \mathrm{~m}}{0.785 \cdot \ln \left(\frac{6.173990514 \mathrm{~m}}{6 \mathrm{~m}}\right)}$

Infinite Medium

10) Isothermal Cylinder in Midplane of Infinite wall
$f \mathrm{x} S=\frac{8 \cdot \mathrm{~d}_{\mathrm{s}}}{\pi \cdot \mathrm{D}}$
ex $28 \mathrm{~m}=\frac{8 \cdot 494.8008429 \mathrm{~m}}{\pi \cdot 45 \mathrm{~m}}$
11) Isothermal Ellipsoid Buried in Infinite Medium
$f \mathrm{fx}=\frac{4 \cdot \pi \cdot \mathrm{a} \cdot \sqrt{1-\frac{\mathrm{b}}{\mathrm{a}^{2}}}}{a \tanh \left(\sqrt{1-\frac{\mathrm{b}}{\mathrm{a}^{2}}}\right)}$
$\mathrm{ex} 28 \mathrm{~m}=\frac{4 \cdot \pi \cdot 5.745084 \mathrm{~m} \cdot \sqrt{1-\frac{0.80 \mathrm{~m}}{(5.745084 \mathrm{~m})^{2}}}}{a \tanh \left(\sqrt{1-\frac{0.80 \mathrm{~m}}{(5.745084 \mathrm{~m})^{2}}}\right)}$
12) Isothermal Sphere Buried in Infinite Medium
$f_{\mathrm{x}} \mathrm{S}=4 \cdot \pi \cdot \mathrm{R}_{\mathrm{s}}$
Open Calculator
ex $28 \mathrm{~m}=4 \cdot \pi \cdot 2.228169 \mathrm{~m}$
13) Two parallel Isothermal Cylinders placed in Infinite medium
$f \mathrm{x} S=\frac{2 \cdot \pi \cdot \mathrm{~L}_{\mathrm{c}}}{a} \cosh \left(\frac{4 \cdot \mathrm{~d}^{2}-\mathrm{D}_{1}^{2}-\mathrm{D}_{2}^{2}}{2 \cdot \mathrm{D}_{1} \cdot \mathrm{D}_{2}}\right)$

ex

$$
28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 4 \mathrm{~m}}{a} \cosh \left(\frac{4 \cdot(10.1890145 \mathrm{~m})^{2}-(5.1 \mathrm{~m})^{2}-(13.739222 \mathrm{~m})^{2}}{2 \cdot 5.1 \mathrm{~m} \cdot 13.739222 \mathrm{~m}}\right)
$$

Semi-Infinite Medium ©

14) Disk Buried Parallel to Surface in Semi-Infinite Medium
$f \mathrm{f} S=4 \cdot \mathrm{D}_{\mathrm{d}}$
ex $28 \mathrm{~m}=4 \cdot 7 \mathrm{~m}$
15) Isothermal Cylinder Buried in Semi-Infinite Medium
$f \times \mathrm{S}_{1}=\frac{2 \cdot \pi \cdot \mathrm{~L}_{\mathrm{c}}}{\ln \left(\frac{4 \cdot \mathrm{~d}_{\mathrm{s}}}{\mathrm{D}}\right)}$
ex $6.642218 \mathrm{~m}=\frac{2 \cdot \pi \cdot 4 \mathrm{~m}}{\ln \left(\frac{4 \cdot 494.8008429 \mathrm{~m}}{45 \mathrm{~m}}\right)}$
16) Isothermal Rectangular Parallelepiped Buried in Semi-Infinite Medium
fix

Open Calculator

$\mathrm{S}=1.685 \cdot \mathrm{~L}_{\mathrm{pr}} \cdot\left(\log 10\left(1+\frac{\mathrm{D}_{\mathrm{ss}}}{\mathrm{W}_{\mathrm{pr}}}\right)\right)^{-0.59} \cdot\left(\frac{\mathrm{D}_{\mathrm{ss}}}{\mathrm{H}}\right)^{-0.078}$
ex $28 \mathrm{~m}=1.685 \cdot 7.0479 \mathrm{~m} \cdot\left(\log 10\left(1+\frac{8 \mathrm{~m}}{11 \mathrm{~m}}\right)\right)^{-0.59} \cdot\left(\frac{8 \mathrm{~m}}{9 \mathrm{~m}}\right)^{-0.078}$
17) Isothermal Sphere Buried in Semi-Infinite Medium
$f x=\frac{2 \cdot \pi \cdot D_{s}}{1-\left(\frac{0.25 \cdot D_{\mathrm{s}}}{\mathrm{d}_{\mathrm{s}}}\right)}$
Open Calculator〔

$$
28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 4.446327 \mathrm{~m}}{1-\left(\frac{0.25 \cdot 4.446327 \mathrm{~m}}{494.8008429 \mathrm{~m}}\right)}
$$

18) Isothermal Sphere Buried in Semi-Infinite Medium whose Surface is Insulated
$\mathrm{fx} \mathrm{S}=\frac{2 \cdot \pi \cdot \mathrm{D}_{\mathrm{si}}}{1+\frac{0.25 \cdot \mathrm{D}_{\mathrm{si}}}{\mathrm{d}_{\mathrm{s}}}}$
Open Calculator
ex $28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 4.466395 \mathrm{~m}}{1+\frac{0.25 \cdot 4.466395 \mathrm{~m}}{494.8008429 \mathrm{~m}}}$
19) Row of Equally Spaced Parallel Isothermal Cylinders Buried in Semiinfinite Medium

$$
\mathrm{ex} 0.083085 \mathrm{~m}=\frac{2 \cdot \pi \cdot 4 \mathrm{~m}}{\ln \left(\frac{2 \cdot 10.1890145 \mathrm{~m}}{\pi \cdot 45 \mathrm{~m}} \cdot \sinh \left(\frac{2 \cdot \pi \cdot 494.8008429 \mathrm{~m}}{10.1890145 \mathrm{~m}}\right)\right)}
$$

20) Thin Rectangular Plate Buried in Semi-Infinite Medium

$f \times S=\frac{2 \cdot \pi \cdot W_{\text {plate }}}{\ln \left(\frac{4 \cdot W_{\text {plate }}}{L_{\text {plate }}}\right)}$
ex $28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 35.42548 \mathrm{~m}}{\ln \left(\frac{4 \cdot 35.42548 \mathrm{~m}}{0.05 \mathrm{~m}}\right)}$
21) Vertical Isothermal Cylinder Buried in Semi-Infinite Medium
$f \times S=\frac{2 \cdot \pi \cdot l_{c}}{\ln \left(\frac{4 \cdot l_{c}}{D_{1}}\right)}$
ex $28 \mathrm{~m}=\frac{2 \cdot \pi \cdot 8.40313 \mathrm{~m}}{\ln \left(\frac{4 \cdot 8.40313 \mathrm{~m}}{5.1 \mathrm{~m}}\right)}$

Variables Used

- a Semi Major Axis of Ellipse (Meter)
- A Cross-Sectional Area (Square Meter)
- b Semi Minor Axis of Ellipse (Meter)
- d Distance Between Centers (Meter)
- D Diameter of Cylinder (Meter)
- \mathbf{D}_{1} Diameter of Cylinder 1 (Meter)
- \mathbf{D}_{2} Diameter of Cylinder 2 (Meter)
- $\mathbf{D}_{\mathbf{d}}$ Diameter of Disk (Meter)
- $\mathbf{d}_{\mathbf{s}}$ Distance from Surface to Centre of Object (Meter)
- $\mathbf{D}_{\mathbf{s}}$ Diameter of Sphere (Meter)
- $\mathbf{D}_{\mathbf{s i}}$ Diameter of Sphere Insulated (Meter)
- $\mathbf{D}_{\mathbf{s s}}$ Distance from Surface to Surface of Object (Meter)
- H Height of Parallelepiped (Meter)
- $\mathbf{I}_{\mathbf{c}}$ Length of Cylinder 1 (Meter)
- L_{c} Length of Cylinder (Meter)
- $L_{\text {pipe }}$ Length of Pipe (Meter)
- $L_{\text {plate }}$ Length of Plate (Meter)
- $L_{p r}$ Length of Parallelepiped (Meter)
- L_{w} Length of Wall (Meter)
- $\mathbf{r}_{\mathbf{1}}$ Inner Radius of Cylinder (Meter)
- $\mathbf{r}_{\mathbf{2}}$ Outer Radius of Cylinder (Meter)
- $\mathbf{r}_{\mathbf{i}}$ Inner Radius (Meter)
- $\mathbf{r}_{\mathbf{o}}$ Outer Radius (Meter)
- $\mathbf{R}_{\mathbf{s}}$ Radius of Sphere (Meter)
- S Conduction Shape Factor (Meter)
- S_{1} Conduction Shape Factor 1 (Meter)
- $\mathbf{S}_{\mathbf{2}}$ Conduction Shape Factor 2 (Meter)
- t Thickness (Meter)
- $\mathbf{t}_{\mathbf{w}}$ Thickness of Wall (Meter)
- w Width of Square Bar (Meter)
- $\mathbf{w}_{\mathbf{i} 1}$ Inner Width 1 (Meter)
- $\mathbf{w}_{\mathbf{i} 2}$ Inner Width 2 (Meter)
- $\mathbf{w}_{\mathbf{0 1}}$ Outer Width 1 (Meter)
- $\mathbf{w}_{\mathbf{0} 2}$ Outer Width 2 (Meter)
- W plate Width of Plate (Meter)
- $\mathbf{W}_{\mathbf{p r}}$ Width of Parallelepiped (Meter)
- Z Eccentric Distance Between Objects (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: acosh, acosh(Number)

Hyperbolic cosine function, is a function that takes a real number as an input and returns the angle whose hyperbolic cosine is that number.

- Function: atanh, atanh(Number)

The inverse hyperbolic tangent function returns the value whose hyperbolic tangent is a number.

- Function: cosh, cosh(Number)

The hyperbolic cosine function is a mathematical function that is defined as the ratio of the sum of the exponential functions of x and negative x to 2 .

- Function: In, In(Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

- Function: $\log 10, \log 10(N u m b e r)$

The common logarithm, also known as the base-10 logarithm or the decimal logarithm, is a mathematical function that is the inverse of the exponential function.

- Function: sinh, sinh(Number)

The hyperbolic sine function, also known as the sinh function, is a mathematical function that is defined as the hyperbolic analogue of the sine function.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: tanh, tanh(Number)

The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

Check other formula lists

- Conduction in Cylinder Formulas
- Conduction in Plane Wall Formulas
- Conduction in Sphere Formulas
- Conduction Shape Factors for Different Configurations

Formulas

- Other shapes Formulas
- Steady State Heat Conduction with Heat Generation Formulas
Transient Heat Conduction
Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

