

Air-Standard Cycles Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Air-Standard Cycles Formulas

Air-Standard Cycles 🗗

1) Actual Air Fuel Ratio

$$extbf{R}_{
m a} = rac{m_{
m a}}{m_{
m f}}$$

Open Calculator 🛂

2) Air Standard Efficiency for Diesel Engines

$$\boxed{ \eta_{\rm d} = 100 \cdot \left(1 - \frac{1}{r^{\gamma-1}} \cdot \frac{r_{\rm c}^{\gamma} - 1}{\gamma \cdot (r_{\rm c} - 1)} \right) }$$

Open Calculator

3) Air Standard Efficiency for Petrol engines

$$\boxed{\text{fx}} \left[\eta_o = 100 \cdot \left(1 - \frac{1}{r^{\gamma - 1}} \right) \right]$$

Open Calculator

4) Air Standard Efficiency given Relative Efficiency

$$\boxed{\eta = \frac{\eta_i}{\eta_r}}$$

Open Calculator

$$\boxed{ 0.506024 = \frac{42}{83} }$$

5) Mean Effective Pressure in Diesel Cycle 🚰

 $\left| \mathbf{P}_{\mathrm{D}} = \mathrm{P}_{1} \cdot rac{\gamma \cdot \mathrm{r}^{\gamma} \cdot \left(\mathrm{r}_{\mathrm{c}} - 1
ight) - \mathrm{r} \cdot \left(\mathrm{r}_{\mathrm{c}}^{\gamma} - 1
ight)}{\left(\gamma - 1
ight) \cdot \left(\mathrm{r} - 1
ight)}
ight|$

Open Calculator

6) Mean Effective Pressure in Dual Cycle

extstyle ext

Open Calculator

$$\underbrace{ 4348.961 \text{kPa} = 110 \text{kPa} \cdot \frac{\left(20\right)^{1.4} \cdot \left(\left(3.35-1\right) + 1.4 \cdot 3.35 \cdot \left(1.95-1\right)\right) - 20 \cdot \left(3.35 \cdot \left(1.95\right)^{1.4} - 1\right)}_{ \left(1.4-1\right) \cdot \left(20-1\right) } }$$

7) Mean Effective Pressure in Otto Cycle

extstyle ext

Open Calculator

ex
$$1567.738$$
kPa = 110 kPa · 20 · $\left(\frac{\left(\left(20\right)^{1.4-1}-1\right)\cdot\left(3.34-1\right)}{\left(20-1\right)\cdot\left(1.4-1\right)}\right)$

8) Relative Air-Fuel Ratio

 $\Phi = rac{R_{
m a}}{R_{
m i}}$

Open Calculator

$$1.088 = \frac{15.9936}{14.7}$$

9) Thermal Efficiency of Atkinson Cycle

$$\eta_{\mathrm{a}} = 100 \cdot \left(1 - \gamma \cdot \left(rac{\mathrm{e} - \mathrm{r}}{\mathrm{e}^{\gamma} - \mathrm{r}^{\gamma}}
ight)
ight)$$

Open Calculator

10) Thermal Efficiency of Diesel Cycle

$$\eta_{
m th} = 1 - rac{1}{{
m r}^{\gamma-1}} \cdot rac{{
m r}_{
m c}^{\gamma} - 1}{\gamma \cdot ({
m r}_{
m c} - 1)}$$

11) Thermal Efficiency of Dual Cycle

$$\boxed{\epsilon_{d} = 100 \cdot \left(1 - \frac{1}{r^{\gamma-1}} \cdot \left(\frac{R_p \cdot r_c^{\gamma} - 1}{R_p - 1 + R_p \cdot \gamma \cdot (r_c - 1)}\right)\right)}$$

 $\begin{array}{c} \text{ex} \ 66.60463 = 100 \cdot \left(1 - \frac{1}{(20)^{1.4-1}} \cdot \left(\frac{3.35 \cdot (1.95)^{1.4} - 1}{3.35 - 1 + 3.35 \cdot 1.4 \cdot (1.95 - 1)}\right) \right) \end{array}$

$$\eta_{
m e} = rac{T_{
m H} - T_{
m L}}{T_{
m H}}$$

$$\eta_1 = 100 \cdot \left(1 - \gamma \cdot \left(rac{\mathrm{r}_\mathrm{p}^{rac{1}{\gamma}} - 1}{\mathrm{r}_\mathrm{p} - 1}
ight)
ight)$$

ex $18.24421 = 100 \cdot \left(1 - 1.4 \cdot \left(\frac{(3.34)^{\frac{1}{1.4}} - 1}{3.34 - 1}\right)\right)$

$$\epsilon_{
m o} = 1 - rac{1}{{
m r}^{\gamma-1}}$$

$$\boxed{0.698291 = 1 - \frac{1}{\left(20\right)^{1.4-1}} }$$

15) Thermal Efficiency of Stirling Cycle given Heat Exchanger Effectiveness 🗗

 $\boxed{\eta_{\text{s}} = 100 \cdot \left(\frac{[R] \cdot \ln(r) \cdot (T_f - T_i)}{[R] \cdot T_f \cdot \ln(r) + C_v \cdot (1 - \epsilon) \cdot (T_f - T_i)}\right)}$

Open Calculator

 $\boxed{ 19.88537 = 100 \cdot \left(\frac{ [R] \cdot \ln(20) \cdot (423K - 283K)}{ [R] \cdot 423K \cdot \ln(20) + 100J/K^* mol \cdot (1 - 0.5) \cdot (423K - 283K)} \right) }$

16) Work Output for Diesel Cycle

 $\mathbf{K} \mathbf{W}_{d} = P_{1} \cdot V_{1} \cdot rac{\mathbf{r}^{\gamma-1} \cdot \left(\gamma \cdot \left(\mathbf{r}_{c} - 1
ight) - \mathbf{r}^{1-\gamma} \cdot \left(\mathbf{r}_{c}^{\gamma} - 1
ight)
ight)}{\gamma - 1}$

Open Calculator 🗗

 $\boxed{ \textbf{ex} \\ 511.4233 \text{KJ} = 110 \text{kPa} \cdot 0.65 \text{m}^{3} \cdot \frac{\left(20\right)^{1.4-1} \cdot \left(1.4 \cdot \left(1.95-1\right) - \left(20\right)^{1-1.4} \cdot \left(\left(1.95\right)^{1.4} - 1\right)\right)}{1.4-1} }$

17) Work Output for Dual Cycle

 $\mathbf{K} egin{aligned} \mathbf{W}_{\mathrm{D}} = \mathrm{P}_{1} \cdot \mathrm{V}_{1} \cdot rac{\mathrm{r}^{\gamma-1} \cdot \left(\gamma \cdot \mathrm{r}_{\mathrm{p}} \cdot \left(\mathrm{r}_{\mathrm{c}} - 1
ight) + \left(\mathrm{r}_{\mathrm{p}} - 1
ight)
ight) - \left(\mathrm{r}_{\mathrm{p}} \cdot \mathrm{r}_{\mathrm{c}}^{\gamma} - 1
ight)}{\gamma - 1} \end{aligned}$

Open Calculator

ex

 $2676.232 \text{KJ} = 110 \text{kPa} \cdot 0.65 \text{m}^{3} \cdot \frac{\left(20\right)^{1.4-1} \cdot \left(1.4 \cdot 3.34 \cdot \left(1.95-1\right) + \left(3.34-1\right)\right) - \left(3.34 \cdot \left(1.95\right)^{1.4}-1\right)}{1.4-1}$

18) Work Output for Otto Cycle 🚰

 $W_{o} = P_{1} \cdot V_{1} \cdot rac{\left(r_{p}-1
ight) \cdot \left(r^{\gamma-1}-1
ight)}{\gamma-1}$

Open Calculator 🗗

 $\boxed{ \begin{array}{l} \textbf{ex} \\ 968.0783 \text{KJ} = 110 \text{kPa} \cdot 0.65 \text{m}^{\text{3}} \cdot \frac{\left(3.34-1\right) \cdot \left(\left(20\right)^{1.4-1}-1\right)}{1.4-1} \end{array} }$

Variables Used

- C_v Molar Specific Heat Capacity at Constant Volume (Joule Per Kelvin Per Mole)
- e Expansion Ratio
- ma Mass of Air (Kilogram)
- m_f Mass of Fuel (Kilogram)
- P₁ Pressure at Start of Isentropic Compression (Kilopascal)
- P_d Mean Effective Pressure of Dual Cycle (Kilopascal)
- P_D Mean Effective Pressure of Diesel Cycle (Kilopascal)
- Po Mean Effective Pressure of Otto Cycle (Kilopascal)
- r Compression Ratio
- R_a Actual Air Fuel Ratio
- rc Cut-off Ratio
- Ri Stoichiometric Air Fuel Ratio
- r_n Pressure Ratio
- R_p Pressure Ratio in Dual Cycle
- T_f Final Temperature (Kelvin)
- T_H Higher Temperature (Kelvin)
- T_i Initial Temperature (Kelvin)
- T_I Lower Temperature (Kelvin)
- V_1 Volume at Start of Isentropic Compression (Cubic Meter)
- W_d Work Output of Diesel Cycle (Kilojoule)
- **W**_D Work Output of Dual Cycle (Kilojoule)
- Work Output of Otto Cycle (Kilojoule)
- V Heat Capacity Ratio
- ε Effectiveness of Heat Exchanger
- ε_d Thermal Efficiency of Dual Cycle
- ξ₀ Thermal Efficiency of Otto Cycle
- **η** Efficiency
- η_a Thermal Efficiency of Atkinson Cycle
- η_d Efficiency of Diesel Cycle
- η_e Thermal Efficiency of Ericsson Cycle
- η_i Indicated Thermal Efficiency

- η_I Thermal Efficiency of Lenoir Cycle
- η_o Efficiency of Otto Cycle
- η_r Relative Efficiency
- η_{S} Thermal Efficiency of Stirling Cycle
- η_{th} Thermal Efficiency of Diesel Cycle
- Relative Air Fuel Ratio

Constants, Functions, Measurements used

- Constant: [R], 8.31446261815324
 Universal gas constant
- Function: In, In(Number)

 The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Temperature in Kelvin (K)

 Temperature Unit Conversion
- Measurement: Volume in Cubic Meter (m³)

 Volume Unit Conversion
- Measurement: Pressure in Kilopascal (kPa)
 Pressure Unit Conversion
- Measurement: Energy in Kilojoule (KJ)

 Energy Unit Conversion
- Measurement: Molar Specific Heat Capacity at Constant Volume in Joule Per Kelvin Per Mole (J/K*mol)

 Molar Specific Heat Capacity at Constant Volume Unit Conversion

Check other formula lists

Air-Standard Cycles Formulas

• Fuel Injection in IC Engine Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/24/2024 | 7:21:24 AM UTC

Please leave your feedback here...

