



# Lifting Flow over Cylinder Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...





# List of 10 Lifting Flow over Cylinder Formulas

# Lifting Flow over Cylinder 🕑

#### 1) 2-D Lift Coefficient for Cylinder

fx 
$$C_{\rm L}=rac{\Gamma}{{
m R}\cdot{
m V}_\infty}$$
 ex  $1.268116=rac{0.7{
m m}^2/{
m s}}{0.08{
m m}\cdot{
m 6.9{
m m}}/{
m s}}$ 

2) Angular Position given Radial Velocity for Lifting Flow over Circular Cylinder C

$$\begin{aligned} & \mathbf{fx} \\ \theta = \arccos\left(\frac{V_r}{\left(1 - \left(\frac{R}{r}\right)^2\right) \cdot V_{\infty}}\right) \end{aligned}$$

$$ex \\ 0.902545rad = \arccos\left(\frac{3.9m/s}{\left(1 - \left(\frac{0.08m}{0.27m}\right)^2\right) \cdot 6.9m/s}\right) \end{aligned}$$

3) Angular Position of Stagnation Point for Lifting Flow over Circular Cylinder 🕑

$$\mathbf{fx} = ar \sin \left( -rac{\Gamma_0}{4 \cdot \pi \cdot \mathrm{V}_{\mathrm{s},\infty} \cdot \mathrm{R}} 
ight)$$

$$\texttt{ex} \text{-}1.055971 \text{rad} = ar \sin \left(-\frac{7 \text{m}^2/\text{s}}{4 \cdot \pi \cdot 8 \text{m/s} \cdot 0.08 \text{m}}\right)$$

#### 4) Freestream Velocity given 2-D Lift Coefficient for Lifting Flow

$$\begin{aligned} & \mathbf{F}_{\infty} = \frac{\Gamma}{\mathbf{R} \cdot \mathbf{C}_{\mathrm{L}}} \end{aligned} \tag{Open Calculator } \\ & \mathbf{E}_{\mathrm{R}} = \frac{0.7 \mathrm{m}^2 / \mathrm{s}}{0.08 \mathrm{m} \cdot 1.2} \end{aligned}$$



Open Calculator

Open Calculator

#### 5) Location of Stagnation Point Outside Cylinder for Lifting Flow C

fx 
$$\mathbf{r}_0 = rac{\Gamma_0}{4\cdot\pi\cdot\mathbf{V}_\infty} + \sqrt{\left(rac{\Gamma_0}{4\cdot\pi\cdot\mathbf{V}_\infty}
ight)^2 - \mathbf{R}^2}$$

ex 
$$0.091569 \mathrm{m} = rac{7 \mathrm{m}^2 / \mathrm{s}}{4 \cdot \pi \cdot 6.9 \mathrm{m} / \mathrm{s}} + \sqrt{\left(rac{7 \mathrm{m}^2 / \mathrm{s}}{4 \cdot \pi \cdot 6.9 \mathrm{m} / \mathrm{s}}
ight)^2 - \left(0.08 \mathrm{m}
ight)^2}$$

6) Radial Velocity for Lifting Flow over Circular Cylinder 🕑

fx 
$$V_{
m r} = \left(1 - \left(rac{
m R}{
m r}
ight)^2
ight)\cdot V_\infty\cdot \cos( heta)$$

ex 
$$3.912562 \text{m/s} = \left(1 - \left(\frac{0.08 \text{m}}{0.27 \text{m}}\right)^2\right) \cdot 6.9 \text{m/s} \cdot \cos(0.9 \text{rad})$$

#### 7) Radius of Cylinder for Lifting Flow

fx 
$$R = \frac{\Gamma}{C_L \cdot V_\infty}$$

ex 
$$0.084541 \text{m} = \frac{0.7 \text{m}^2/\text{s}}{1.2 \cdot 6.9 \text{m/s}}$$

#### 8) Stream Function for Lifting Flow over Circular Cylinder

fx 
$$\psi = V_{\infty} \cdot \mathbf{r} \cdot \sin(\theta) \cdot \left(1 - \left(\frac{R}{r}\right)^2\right) + \frac{\Gamma}{2 \cdot \pi} \cdot \ln\left(\frac{r}{R}\right)$$

Open Calculator

ex

 $1.466737 \mathrm{m^2/s} = 6.9 \mathrm{m/s} \cdot 0.27 \mathrm{m} \cdot \sin(0.9 \mathrm{rad}) \cdot \left(1 - \left(rac{0.08 \mathrm{m}}{0.27 \mathrm{m}}
ight)^2
ight) + rac{0.7 \mathrm{m^2/s}}{2 \cdot \pi} \cdot \ln\left(rac{0.27 \mathrm{m}}{0.08 \mathrm{m}}
ight)$ 



Open Calculator

Open Calculator

9) Surface Pressure Coefficient for Lifting Flow over Circular Cylinder

$$\begin{aligned} & \mathbf{fx} \left[ \mathbf{C_p} = 1 - \left( \left( 2 \cdot \sin(\theta) \right)^2 + \frac{2 \cdot \Gamma \cdot \sin(\theta)}{\pi \cdot \mathbf{R} \cdot \mathbf{V_{\infty}}} + \left( \frac{\Gamma}{2 \cdot \pi \cdot \mathbf{R} \cdot \mathbf{V_{\infty}}} \right)^2 \right) \right] \end{aligned}$$

10) Tangential Velocity for Lifting Flow over Circular Cylinder

$$\begin{split} & \mathbf{fx} \\ \mathbf{V}_{\theta} = -\left(1 + \left(\frac{\mathbf{R}}{\mathbf{r}}\right)^{2}\right) \cdot \mathbf{V}_{\infty} \cdot \sin(\theta) - \frac{\Gamma}{2 \cdot \pi \cdot \mathbf{r}} \\ & \mathbf{ex} \\ -6.292089 \mathrm{m/s} = -\left(1 + \left(\frac{0.08\mathrm{m}}{0.27\mathrm{m}}\right)^{2}\right) \cdot 6.9\mathrm{m/s} \cdot \sin(0.9\mathrm{rad}) - \frac{0.7\mathrm{m}^{2}/\mathrm{s}}{2 \cdot \pi \cdot 0.27\mathrm{m}} \end{split}$$

Open Calculator 🕑

### Variables Used

- CL Lift Coefficient
- Cp Surface Pressure Coefficient
- r Radial Coordinate (Meter)
- R Cylinder Radius (Meter)
- ro Radial Coordinate of Stagnation Point (Meter)
- V<sub>∞</sub> Freestream Velocity (Meter per Second)
- V<sub>r</sub> Radial Velocity (Meter per Second)
- V<sub>s.∞</sub> Stagnation Freestream Velocity (Meter per Second)
- V<sub>0</sub> Tangential Velocity (Meter per Second)
- **C** Vortex Strength (Square Meter per Second)
- **F**<sub>0</sub> Stagnation Vortex Strength (Square Meter per Second)
- θ Polar Angle (Radian)
- **θ**<sub>0</sub> Polar Angle of Stagnation Point (*Radian*)
- **W** Stream Function (Square Meter per Second)



## **Constants, Functions, Measurements used**

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: arccos, arccos(Number) Inverse trigonometric cosine function
- Function: arsin, arsin(Number) Inverse trigonometric sine function
- Function: cos, cos(Angle) Trigonometric cosine function
- Function: In, In(Number) Natural logarithm function (base e)
- Function: **sin**, sin(Angle) *Trigonometric sine function*
- Function: **sqrt**, sqrt(Number) Square root function
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Velocity Potential in Square Meter per Second (m<sup>2</sup>/s) Velocity Potential Unit Conversion





| Lifting Flow over Cylinder Formulas | 7/7                                    |
|-------------------------------------|----------------------------------------|
| Check other formula lists           |                                        |
| Lifting Flow over Cylinder Formulas | Nonlifting Flow over Cylinder Formulas |

Feel free to SHARE this document with your friends!

## **PDF Available in**

English Spanish French German Russian Italian Portuguese Polish Dutch

1/1/2024 | 5:20:26 AM UTC

Please leave your feedback here...

