
calculatoratoz.com

Lift Distribution Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 30 Lift Distribution Formulas

Lift Distribution

Elliptical Lift Distribution ©

1) Aspect Ratio given Induced Angle of Attack $\boxed{\Omega}$

$$
f \mathrm{x} \mathrm{AR}_{\mathrm{ELD}}=\frac{\mathrm{C}_{\mathrm{L}, \mathrm{ELD}}}{\pi \cdot \alpha_{\mathrm{i}}}
$$

ex $2.470395=\frac{1.49}{\pi \cdot 11^{\circ}}$
2) Aspect Ratio given Induced Drag Coefficient
$f \times A R_{E L D}=\frac{C_{L, E L D}^{2}}{\pi \cdot C_{D, i, E L D}}$
ex $2.453749=\frac{(1.49)^{2}}{\pi \cdot 0.288}$
3) Circulation at given Distance along Wingspan
$f_{x} \Gamma=\Gamma_{o} \cdot \sqrt{1-\left(2 \cdot \frac{a}{b}\right)^{2}}$

Open Calculator 〔

ex $13.99862 \mathrm{~m}^{2} / \mathrm{s}=14 \mathrm{~m}^{2} / \mathrm{s} \cdot \sqrt{1-\left(2 \cdot \frac{16.4 \mathrm{~mm}}{2340 \mathrm{~mm}}\right)^{2}}$
4) Circulation at Origin given Downwash
$f_{\mathrm{x}} \Gamma_{\mathrm{o}}=-2 \cdot \mathrm{w} \cdot \mathrm{b}$
Open Calculator
ex $14.04 \mathrm{~m}^{2} / \mathrm{s}=-2 \cdot-3 \mathrm{~m} / \mathrm{s} \cdot 2340 \mathrm{~mm}$
5) Circulation at Origin given Induced Angle of Attack
$f \mathrm{f} \Gamma_{\mathrm{o}}=2 \cdot \mathrm{~b} \cdot \alpha_{\mathrm{i}} \cdot \mathrm{V}_{\infty}$
Open Calculator
ex $13.92668 \mathrm{~m}^{2} / \mathrm{s}=2 \cdot 2340 \mathrm{~mm} \cdot 11^{\circ} \cdot 15.5 \mathrm{~m} / \mathrm{s}$
6) Circulation at Origin given Lift of Wing
$f \times \Gamma_{o}=4 \cdot \frac{F_{L}}{\rho_{\infty} \cdot V_{\infty} \cdot b \cdot \pi}$
Open Calculator
ex $14.0074 \mathrm{~m}^{2} / \mathrm{s}=4 \cdot \frac{488.8 \mathrm{~N}}{1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 15.5 \mathrm{~m} / \mathrm{s} \cdot 2340 \mathrm{~mm} \cdot \pi}$

聿
7) Circulation at Origin in Elliptical Lift Distribution
$f \mathbf{x} \Gamma_{o}=2 \cdot V_{\infty} \cdot S_{0} \cdot \frac{\mathrm{C}_{1}}{\pi \cdot \mathrm{~b}}$
ex $13.97911 \mathrm{~m}^{2} / \mathrm{s}=2 \cdot 15.5 \mathrm{~m} / \mathrm{s} \cdot 2.21 \mathrm{~m}^{2} \cdot \frac{1.5}{\pi \cdot 2340 \mathrm{~mm}}$
8) Coefficient of Lift given Circulation at Origin
$f_{\mathrm{x}} \mathrm{C}_{\mathrm{L}, \mathrm{ELD}}=\pi \cdot \mathrm{b} \cdot \frac{\Gamma_{\mathrm{o}}}{2 \cdot \mathrm{~V}_{\infty} \cdot \mathrm{S}_{0}}$
Open Calculator ©
ex $1.502242=\pi \cdot 2340 \mathrm{~mm} \cdot \frac{14 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot 15.5 \mathrm{~m} / \mathrm{s} \cdot 2.21 \mathrm{~m}^{2}}$
9) Coefficient of Lift given Induced Angle of Attack
$f \times \mathrm{C}_{\mathrm{L}, \mathrm{ELD}}=\pi \cdot \alpha_{\mathrm{i}} \cdot \mathrm{AR}_{\mathrm{ELD}}$
ex $1.495793=\pi \cdot 11^{\circ} \cdot 2.48$
10) Coefficient of Lift given Induced Drag Coefficient
$\mathrm{fx}_{\mathrm{C}}^{\mathrm{C}_{\mathrm{L}, \mathrm{ELD}}=\sqrt{\pi \cdot \mathrm{AR}_{\mathrm{ELD}} \cdot \mathrm{C}_{\mathrm{D}, \mathrm{i}, \mathrm{ELD}}}}$
ex $1.497949=\sqrt{\pi \cdot 2.48 \cdot 0.288}$
11) Downwash in Elliptical Lift Distribution
$f \mathrm{x} \mathrm{w}=-\frac{\Gamma_{\mathrm{o}}}{2 \cdot \mathrm{~b}}$
ex $-2.991453 \mathrm{~m} / \mathrm{s}=-\frac{14 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot 2340 \mathrm{~mm}}$
12) Freestream Velocity given Circulation at Origin
$f x \mathrm{~V}_{\infty}=\pi \cdot \mathrm{b} \cdot \frac{\Gamma_{\mathrm{o}}}{2 \cdot \mathrm{~S}_{0} \cdot \mathrm{C}_{\mathrm{L}, \mathrm{ELD}}}$
Open Calculator
ex $15.62735 \mathrm{~m} / \mathrm{s}=\pi \cdot 2340 \mathrm{~mm} \cdot \frac{14 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot 2.21 \mathrm{~m}^{2} \cdot 1.49}$
13) Freestream Velocity given Induced Angle of Attack
$\mathrm{fx} \mathrm{V}_{\infty}=\frac{\Gamma_{\mathrm{o}}}{2 \cdot \mathrm{~b} \cdot \alpha_{\mathrm{i}}}$
Open Calculator
ex $15.5816 \mathrm{~m} / \mathrm{s}=\frac{14 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot 2340 \mathrm{~mm} \cdot 11^{\circ}}$
14) Induced Angle of Attack given Aspect Ratio
$\mathrm{fx} \alpha_{\mathrm{i}}=\frac{\mathrm{C}_{\mathrm{l}}}{\pi \cdot \mathrm{AR}_{\mathrm{ELD}}}$
Open Calculator
ex $11.03094^{\circ}=\frac{1.5}{\pi \cdot 2.48}$

目
15) Induced Angle of Attack given Circulation at Origin
$f x \alpha_{i}=\frac{\Gamma_{o}}{2 \cdot b \cdot V_{\infty}}$
ex $11.05791^{\circ}=\frac{14 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot 2340 \mathrm{~mm} \cdot 15.5 \mathrm{~m} / \mathrm{s}}$
16) Induced Angle of Attack given Coefficient of Lift
$f x \alpha_{i}=S_{0} \cdot \frac{C_{l}}{\pi \cdot b^{2}}$
ex $11.04141^{\circ}=2.21 \mathrm{~m}^{2} \cdot \frac{1.5}{\pi \cdot(2340 \mathrm{~mm})^{2}}$
17) Induced Angle of Attack given Downwash
$f \mathrm{x} \alpha_{\mathrm{i}}=-\left(\frac{\mathrm{w}}{\mathrm{V}_{\infty}}\right)$
$\mathrm{ex} 11.08951^{\circ}=-\left(\frac{-3 \mathrm{~m} / \mathrm{s}}{15.5 \mathrm{~m} / \mathrm{s}}\right)$
Open Calculator
18) Induced Drag Coefficient given Aspect Ratio

$$
f_{\mathrm{x}} \mathrm{C}_{\mathrm{D}, \mathrm{i}, \mathrm{ELD}}=\frac{\mathrm{C}_{\mathrm{L}, \mathrm{ELD}}}{\pi \cdot \mathrm{AR}_{\mathrm{ELD}}}
$$

ex $0.284952=\frac{(1.49)^{2}}{\pi \cdot 2.48}$
19) Lift at given Distance along Wingspan
$f_{\mathrm{x}} \mathrm{L}=\rho_{\infty} \cdot \mathrm{V}_{\infty} \cdot \Gamma_{\mathrm{o}} \cdot \sqrt{1-\left(2 \cdot \frac{a}{b}\right)^{2}}$

Open Calculator

ex

$265.7989 \mathrm{~N}=1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 15.5 \mathrm{~m} / \mathrm{s} \cdot 14 \mathrm{~m}^{2} / \mathrm{s} \cdot \sqrt{1-\left(2 \cdot \frac{16.4 \mathrm{~mm}}{2340 \mathrm{~mm}}\right)^{2}}$
20) Lift of Wing given Circulation at Origin
$\mathrm{fx}_{\mathrm{x}} \mathrm{F}_{\mathrm{L}}=\frac{\pi \cdot \rho_{\infty} \cdot \mathrm{V}_{\infty} \cdot \mathrm{b} \cdot \Gamma_{\mathrm{o}}}{4}$
Open Calculator
ex $488.5416 \mathrm{~N}=\frac{\pi \cdot 1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 15.5 \mathrm{~m} / \mathrm{s} \cdot 2340 \mathrm{~mm} \cdot 14 \mathrm{~m}^{2} / \mathrm{s}}{4}$

General Lift Distribution

21) Aspect Ratio given Induced Drag Factor Σ
$f \times \mathrm{AR}_{\mathrm{GLD}}=\frac{(1+\delta) \cdot \mathrm{C}_{\mathrm{L}, \mathrm{GLD}}^{2}}{\pi \cdot \mathrm{C}_{\mathrm{D}, \mathrm{i}, \mathrm{GLD}}}$
Open Calculator
ex $15.04641=\frac{(1+0.05) \cdot(1.47)^{2}}{\pi \cdot 0.048}$
22) Induced Drag Coefficient given Induced Drag Factor
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{D}, \mathrm{i}, \mathrm{GLD}}=\frac{(1+\delta) \cdot \mathrm{C}_{\mathrm{L}, \mathrm{GLD}}^{2}}{\pi \cdot \mathrm{AR}_{\mathrm{GLD}}}$
Open Calculator
ex $0.048149=\frac{(1+0.05) \cdot(1.47)^{2}}{\pi \cdot 15}$
23) Induced Drag Coefficient given Span Efficiency Factor
$\mathrm{fx} \mathrm{C}_{\mathrm{D}, \mathrm{i}, \mathrm{GLD}}=\frac{\mathrm{C}_{\mathrm{L}, \mathrm{GLD}}^{2}}{\pi \cdot \mathrm{e}_{\mathrm{span}} \cdot \mathrm{AR}_{\mathrm{GLD}}}$
Open Calculator
ex $0.048269=\frac{(1.47)^{2}}{\pi \cdot 0.95 \cdot 15}$
24) Induced Drag Factor given Induced Drag Coefficient
$\mathrm{fx} \delta=\frac{\pi \cdot \mathrm{AR}_{\mathrm{GLD}} \cdot \mathrm{C}_{\mathrm{D}, \mathrm{i}, \mathrm{GLD}}}{\mathrm{C}_{\mathrm{L}, \mathrm{GLD}}^{2}}-1$
Open Calculator
ex $0.046761=\frac{\pi \cdot 15 \cdot 0.048}{(1.47)^{2}}-1$
25) Induced Drag Factor given Span Efficiency Factor
$f \mathrm{x} \delta=\mathrm{e}_{\mathrm{span}}^{-1}-1$
ex $0.052632=(0.95)^{-1}-1$
26) Induced Lift Slope Factor given Lift Curve Slope of Finite Wing

$$
\mathrm{ex} 0.002313=\frac{\pi \cdot 15 \cdot\left(\frac{6.28 \mathrm{rad}^{-1}}{5.54 \mathrm{rad}^{-1}}-1\right)}{6.28 \mathrm{rad}^{-1}}-1
$$

27) Lift Coefficient given Induced Drag Factor $\boxed{\square}$
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{L}, \mathrm{GLD}}=\sqrt{\frac{\pi \cdot \mathrm{AR}_{\mathrm{GLD}} \cdot \mathrm{C}_{\mathrm{D}, \mathrm{i}, \mathrm{GLD}}}{1+\delta}}$
ex $1.467731=\sqrt{\frac{\pi \cdot 15 \cdot 0.048}{1+0.05}}$
28) Lift Coefficient given Span Efficiency Factor
$f \times \mathrm{C}_{\mathrm{L}, \mathrm{GLD}}=\sqrt{\pi \cdot \mathrm{e}_{\mathrm{span}} \cdot \mathrm{AR}_{\mathrm{GLD}} \cdot \mathrm{C}_{\mathrm{D}, \mathrm{i}, \mathrm{GLD}}}$
Open Calculator
ex $1.465895=\sqrt{\pi \cdot 0.95 \cdot 15 \cdot 0.048}$
29) Span Efficiency Factor $\boxed{\square}$
$f \times \mathrm{e}_{\text {span }}=(1+\delta)^{-1}$
ex $0.952381=(1+0.05)^{-1}$

30) Span Efficiency Factor given Induced Drag Coefficient $\boxed{\checkmark}$

$$
\mathrm{fx} \mathrm{e}_{\mathrm{span}}=\frac{\mathrm{C}_{\mathrm{L}, \mathrm{GLD}}^{2}}{\pi \cdot \mathrm{AR}_{\mathrm{GLD}} \cdot \mathrm{C}_{\mathrm{D}, \mathrm{i}, \mathrm{GLD}}}
$$

ex $0.955328=\frac{(1.47)^{2}}{\pi \cdot 15 \cdot 0.048}$

Variables Used

- a Distance from Center to Point (Millimeter)
- \mathbf{a}_{0} 2D Lift Curve Slope (1 per Radian)
- $\mathbf{a}_{\mathbf{C}, \mathrm{I}}$ Lift Curve Slope (1 per Radian)
- $\mathbf{A R}_{\text {ELD }}$ Wing Aspect Ratio ELD
- $\mathbf{A R}_{\text {GLD }}$ Wing Aspect Ratio GLD
- b Wingspan (Millimeter)
- $C_{D, i, E L D}$ Induced Drag Coefficient ELD
- CD,i,GLD Induced Drag Coefficient GLD
- $\mathbf{C}_{\mathbf{I}}$ Lift Coefficient Origin
- $\mathbf{C}_{\text {L,ELD }}$ Lift Coefficient ELD
- CL,GLD Lift Coefficient GLD
- $\mathbf{e}_{\text {span }}$ Span Efficiency Factor
- $F_{\text {L }}$ Lift Force (Newton)
- L Lift at Distance (Newton)
- S_{0} Reference Area Origin (Square Meter)
- \mathbf{V}_{∞} Freestream Velocity (Meter per Second)
- w Downwash (Meter per Second)
- $\boldsymbol{\alpha}_{\mathbf{i}}$ Induced Angle of Attack (Degree)
- 「 Circulation (Square Meter per Second)
- $\Gamma_{\mathbf{o}}$ Circulation at Origin (Square Meter per Second)
- $\boldsymbol{\delta}$ Induced Drag Factor
- $\boldsymbol{\rho}_{\infty}$ Freestream Density (Kilogram per Cubic Meter)
- $\mathbf{T}_{\text {FW }}$ Induced Lift Slope Factor of Finite Wing

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

Density Unit Conversion

- Measurement: Momentum Diffusivity in Square Meter per Second ($\mathrm{m}^{2} / \mathrm{s}$) Momentum Diffusivity Unit Conversion
- Measurement: Reciprocal Angle in 1 per Radian (rad^{-1})

Reciprocal Angle Unit Conversion

Check other formula lists

- Flow and Lift Distribution - Lift Distribution Formulas Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

