

Anti Geometry of Independent Suspension Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Anti Geometry of Independent Suspension Formulas

Anti Geometry of Independent Suspension 🗗

1) Angle between IC and Ground 🗹

 $\Phi ext{R} = a an igg(rac{ ext{SVSA}_ ext{h}}{ ext{SVSA}_ ext{l}}igg)$

Open Calculator

 $= a \tan \left(\frac{200 \text{mm}}{600 \text{mm}} \right)$

2) Camber Change Rate

 $\theta = a an \left(rac{1}{ ext{fvsa}}
ight)$

Open Calculator

 $oxed{ex} 36.89742^\circ = a anigg(rac{1}{1332 ext{mm}}igg)$

3) Front View Swing Arm

 $fvsa = \frac{\frac{a_{tw}}{2}}{1 - RC}$

Open Calculator

 $extbf{ex} 1332.667 ext{mm} = rac{rac{1999 ext{mm}}{2}}{1 - 0.25}$

4) Height of Centre of Gravity from Road Surface from Percentage Anti Dive

 $\mathbf{h} = rac{(\% B_f) \cdot \left(rac{\mathrm{SVSA_h}}{\mathrm{SVSA_l}}
ight) \cdot b_{\mathrm{ind}}}{\% \mathrm{AD_f}}$

Open Calculator 🗗

 $ext{ex} 10000 ext{mm} = rac{(60) \cdot \left(rac{200 ext{mm}}{600 ext{mm}}
ight) \cdot 1350 ext{mm}}{2.7}$

5) Height of Centre of Gravity from Road Surface from Percentage Anti Lift

 $\mathbf{h} = rac{(\% \mathrm{B_r}) \cdot \left(rac{\mathrm{SVSA_h}}{\mathrm{SVSA_l}}
ight) \cdot \mathrm{b_{ind}}}{\% \mathrm{AL_r}}$

Open Calculator

6) Percent Anti Squat

 $m \%AS = \left(rac{ an(\Phi R)}{rac{h}{b_{
m ind}}}
ight) \cdot 100$

Open Calculator

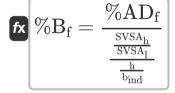
 $oxed{ex} 4.498704 = \left(rac{ an(18.43\degree)}{rac{10000 ext{mm}}{1350 ext{mm}}}
ight) \cdot 100$

7) Percentage Anti Dive on Front

 $\%{
m AD_f} = (\%{
m B_f}) \cdot rac{rac{{
m SVSA_h}}{{
m SVSA_l}}}{rac{{
m h}}{{
m b}_{
m ind}}}$

Open Calculator 🖸

ex
$$2.7 = (60) \cdot \frac{\frac{200 \mathrm{mm}}{600 \mathrm{mm}}}{\frac{10000 \mathrm{mm}}{1350 \mathrm{mm}}}$$


8) Percentage Anti Lift

 $m \%AL_r = (\%B_f) \cdot rac{rac{SVSA_h}{SVSA_l}}{rac{h}{b_{ind}}}$

Open Calculator 🖸

ex
$$2.7 = (60) \cdot \frac{\frac{200 \text{mm}}{600 \text{mm}}}{\frac{10000 \text{mm}}{1350 \text{mm}}}$$

9) Percentage Front Braking given Percentage Anti Dive

$$60 = rac{2.7}{rac{200 ext{nm}}{600 ext{mm}}}$$

10) Percentage Rear Braking given Percentage Anti Lift 🗗

 $m \%B_r = rac{rac{\% A L_r}{SVSA_h}}{rac{SVSA_h}{b_{ind}}}$

Open Calculator

 $\begin{array}{c} \textbf{ex} \ 60.88889 = \frac{2.74}{\frac{200 \text{mm}}{10000 \text{mm}}} \\ \hline & \frac{10000 \text{mm}}{1350 \text{mm}} \end{array}$

11) Roll Camber

 $RC = \frac{\theta c}{RA}$

Open Calculator 🗗

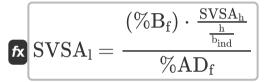
$$0.25 = \frac{2}{8}$$

12) Side View Swing Arm Height given Percentage Anti Dive

 $ext{SVSA}_h = rac{ \% AD_f}{ (\% B_f) \cdot rac{rac{1}{ ext{SVSA}_l}}{rac{h}{b_{ind}}} }$

Open Calculator 🗗

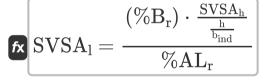
$$\mathbf{ex}$$
 $200 \mathrm{mm} = rac{2.7}{(60) \cdot rac{1}{600 \mathrm{mm}} rac{1000 \mathrm{mm}}{1350 \mathrm{mm}}}$


13) Side View Swing Arm Height given Percentage Anti Lift 🗗

 $ext{SVSA}_{h} = rac{\% A L_{r}}{(\% B_{r}) \cdot rac{rac{1}{SVSA_{l}}}{rac{h}{b_{ind}}}}$

Open Calculator

$$= \frac{2.74}{(60.88889) \cdot \frac{\frac{1}{600 \text{mm}}}{\frac{10000 \text{mm}}{1350 \text{mm}}} } }$$

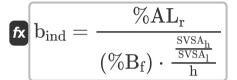

14) Side View Swing Arm Length given Percentage Anti Dive

Open Calculator 🗗

$$oxed{ex} 600 \mathrm{mm} = rac{(60) \cdot rac{200 \mathrm{mm}}{rac{10000 \mathrm{mm}}{1350 \mathrm{mm}}}}{2.7}$$

15) Side View Swing Arm Length given Percentage Anti Lift

$$ext{ex} 600 ext{mm} = rac{(60.88889) \cdot rac{200 ext{mm}}{rac{10000 ext{mm}}{1350 ext{mm}}}}{2.74}$$


16) Wheelbase of Vehicle from Percentage Anti Dive

 $b_{
m ind} = rac{\% A D_f}{(\% B_f) \cdot rac{rac{{
m SVSA_h}}{{
m SVSA_l}}}{h}}$

Open Calculator

ex
$$1350 \mathrm{mm} = rac{2.7}{(60) \cdot rac{200 \mathrm{mm}}{10000 \mathrm{mm}}}$$

17) Wheelbase of Vehicle from Percentage Anti Lift

Open Calculator

ex
$$1370 \mathrm{mm} = rac{2.74}{(60) \cdot rac{200 \mathrm{mm}}{600 \mathrm{mm}}}$$

Variables Used

- %AD_f Percentage Anti Dive Front
- %AL_r Percentage Anti Lift
- %AS Percentage Anti Squat
- %B_f Percentage Front Braking
- %B_r Percentage Rear Braking
- a_{tw} Track Width of Vehicle (Millimeter)
- b_{ind} Independent Wheelbase of Vehicle (Millimeter)
- **fvsa** Front View Swing Arm (Millimeter)
- h Height of CG above Road (Millimeter)
- RA Roll Angle (Degree)
- RC Roll Camber
- SVSA_h Side View Swing Arm Height (Millimeter)
- SVSA_I Side View Swing Arm Length (Millimeter)
- θ Camber Change Rate (Degree)
- θc Camber Angle (Degree)
- ΦR Angle between IC and Ground (Degree)

Constants, Functions, Measurements used

- Function: atan, atan(Number)
 Inverse tan is used to calculate the angle by applying the tangent ratio of
 the angle, which is the opposite side divided by the adjacent side of the
 right triangle.
- Function: tan, tan(Angle)

 The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion

Check other formula lists

 Anti Geometry of Independent Suspension Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/15/2024 | 6:13:23 PM UTC

Please leave your feedback here...

