

Short Axially Loaded Columns with Helical Ties Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 21 Short Axially Loaded Columns with Helical Ties Formulas

Short Axially Loaded Columns with Helical Ties C

1) Area of Concrete given Factored Axial Load $A_{c} = \frac{\left(\frac{P_{f}}{1.05}\right) - 0.67 \cdot f_{y} \cdot A_{st}}{0.4 \cdot f_{ck}}$ Open Calculator $\sum 52450.01 \text{mm}^{2} = \frac{\left(\frac{583672 \text{kN}}{1.05}\right) - 0.67 \cdot 450 \text{MPa} \cdot 452 \text{mm}^{2}}{0.4 \cdot 20 \text{MPa}}$ 2) Area of Cross-section of Spiral Reinforcement given Volume $\sum A_{st} = \frac{V_{h}}{\pi \cdot (d_{c} - \Phi)}$ Open Calculator Open Ca

ex
$$452$$
mm² = $\frac{191700$ m³}{\pi \cdot (150mm - 15mm)

3) Area of Longitudinal Reinforcement for Columns given Factored Axial Load in Spiral Columns

$$\mathbf{fx} \mathbf{A}_{st} = \frac{\left(\frac{P_{f}}{1.05}\right) - (0.4 \cdot f_{ck} \cdot A_{c})}{0.67 \cdot f_{y}}$$

$$\mathbf{ex} 452.0003 \text{mm}^{2} = \frac{\left(\frac{583672 \text{kN}}{1.05}\right) - (0.4 \cdot 20 \text{MPa} \cdot 52450 \text{mm}^{2})}{0.67 \cdot 450 \text{MPa}}$$

Open Calculator

4) Characteristic Compressive Strength of Concrete given Factored Axial Load in Spiral Columns

$$fx = \frac{\left(\frac{P_f}{1.05}\right) - 0.67 \cdot f_y \cdot A_{st}}{0.4 \cdot A_c}$$

$$ex 20MPa = \frac{\left(\frac{583672kN}{1.05}\right) - 0.67 \cdot 450MPa \cdot 452mm^2}{0.4 \cdot 52450mm^2}$$

5) Characteristic Strength of Compression Reinforcement given Factored Load in Spiral Columns

$$f_{x} f_{y} = \frac{\left(\frac{P_{f}}{1.05}\right) - \left(0.4 \cdot f_{ck} \cdot A_{c}\right)}{0.67 \cdot A_{st}}$$

$$e_{x} 450.0003 MPa = \frac{\left(\frac{583672 kN}{1.05}\right) - \left(0.4 \cdot 20 MPa \cdot 52450 mm^{2}\right)}{0.67 \cdot 452 mm^{2}}$$

6) Diameter of Core given Volume of Core

fx
$$d_c = \sqrt{4 \cdot \frac{V_c}{\pi \cdot P}}$$

ex $150.0002mm = \sqrt{4 \cdot \frac{176715m^3}{\pi \cdot 10mm}}$

7) Diameter of Core given Volume of Helical Reinforcement in One Loop

fx
$$d_c = \left(\frac{V_h}{\pi \cdot A_{st}}\right) + \Phi$$

ex $150mm = \left(\frac{191700m^3}{\pi \cdot 452mm^2}\right) + 15mm$

Open Calculator

Open Calculator 🕑

8) Diameter of Spiral Reinforcement given Volume of Helical Reinforcement in one Loop

$$fx A_{sc} = p \cdot \frac{A_g}{100}$$

$$ex 30 mm^2 = 2 \cdot \frac{1500 mm^2}{100}$$
16) Factored Axial Load on Member C
$$fx P_{fm} = (0.4 \cdot f_{ck} \cdot A_c) + (0.67 \cdot f_y \cdot A_{st})$$
Open Calculator C
$$ex 555.878 kN = (0.4 \cdot 20 MPa \cdot 52450 mm^2) + (0.67 \cdot 450 MPa \cdot 452 mm^2)$$

17) Factored Axial Load on Member given Gross Area of Concrete 🕑

fx
$$\mathbf{P}_{\mathrm{fm}} = \left(0.4 \cdot \mathbf{f}_{\mathrm{ck}} + \left(rac{\mathrm{p}}{100}
ight) \cdot \left(0.67 \cdot \mathbf{f}_{\mathrm{y}} - 0.4 \cdot \mathbf{f}_{\mathrm{ck}}
ight)
ight) \cdot \mathbf{A}_{\mathrm{g}}$$

$$20.805 \mathrm{kN} = \left(0.4 \cdot 20 \mathrm{MPa} + \left(rac{2}{100}
ight) \cdot \left(0.67 \cdot 450 \mathrm{MPa} - 0.4 \cdot 20 \mathrm{MPa}
ight)
ight) \cdot 1500 \mathrm{mm^2}$$

18) Gross Area of Concrete given Area of Concrete 🕑

fx
$$A_g = \frac{A_c}{1 - \left(\frac{p}{100}\right)}$$

ex $53520.41 \text{mm}^2 = \frac{52450 \text{mm}^2}{1 - \left(\frac{2}{100}\right)}$

19) Gross Area of concrete given Area of Longitudinal Reinforcement

fx
$$A_g = 100 \cdot \frac{A_{sc}}{p}$$

ex $1500 \text{mm}^2 = 100 \cdot \frac{30 \text{mm}^2}{2}$

20) Gross Area of Concrete given Factored Axial Load on Member 🕑

2

ex

21) Percentage of Compression Reinforcement given Area of Longitudinal Reinforcement

Variables Used

- A_c Area of Concrete (Square Millimeter)
- A_a Gross Area of Concrete (Square Millimeter)
- Asc Area of Steel Reinforcement in Compression (Square Millimeter)
- Ast Area of Steel Reinforcement (Square Millimeter)
- **d**_c Diameter of Core (Millimeter)
- fck Characteristic Compressive Strength (Megapascal)
- f_v Characteristic Strength of Steel Reinforcement (Megapascal)
- p Percentage of Compression Reinforcement
- P Pitch of Spiral Reinforcement (Millimeter)
- P_f Factored Load (Kilonewton)
- Pfm Factored Load on Member (Kilonewton)
- V_c Volume of Core (Cubic Meter)
- V_h Volume of Helical Reinforcement (Cubic Meter)
- **Φ** Diameter of Spiral Reinforcement (Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: **sqrt**, sqrt(Number) *Square root function*
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Volume in Cubic Meter (m³) Volume Unit Conversion
- Measurement: Area in Square Millimeter (mm²) Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa) Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN) Force Unit Conversion
- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Allowable Design for Column Formulas 🔽
- Column Base Plate Design Formulas C Short Axially Loaded Columns with
- Columns of Special Materials Formulas
- Eccentric Loads on Columns Formulas

- Elastic Flexural Buckling of Columns Formulas
- Helical Ties Formulas
- Ultimate Strength Design of Concrete Columns Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/24/2023 | 10:30:46 PM UTC

Please leave your feedback here ...

