

Short Axially Loaded Columns with Helical Ties Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Short Axially Loaded Columns with Helical Ties Formulas

Short Axially Loaded Columns with Helical Ties ©

1) Area of Concrete given Factored Axial Load
$\mathrm{fx} \mathrm{A}_{\mathrm{c}}=\frac{\left(\frac{\mathrm{P}_{\mathrm{f}}}{1.05}\right)-0.67 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{A}_{\mathrm{st}}}{0.4 \cdot \mathrm{f}_{\mathrm{ck}}}$
ex $52450.01 \mathrm{~mm}^{2}=\frac{\left(\frac{583672 \mathrm{kN}}{1.05}\right)-0.67 \cdot 450 \mathrm{MPa} \cdot 452 \mathrm{~mm}^{2}}{0.4 \cdot 20 \mathrm{MPa}}$
2) Area of Cross-section of Spiral Reinforcement given Volume
$f \mathrm{fx} \mathrm{A}_{\mathrm{st}}=\frac{\mathrm{V}_{\mathrm{h}}}{\pi \cdot\left(\mathrm{d}_{\mathrm{c}}-\Phi\right)}$
Open Calculator
ex $452 \mathrm{~mm}^{2}=\frac{191700 \mathrm{~m}^{3}}{\pi \cdot(150 \mathrm{~mm}-15 \mathrm{~mm})}$
3) Area of Longitudinal Reinforcement for Columns given Factored Axial Load in Spiral Columns
$f \mathrm{fx} \mathrm{A}_{\mathrm{st}}=\frac{\left(\frac{\mathrm{P}_{\mathrm{f}}}{1.05}\right)-\left(0.4 \cdot \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{A}_{\mathrm{c}}\right)}{0.67 \cdot \mathrm{f}_{\mathrm{y}}}$
ex $452.0003 \mathrm{~mm}^{2}=\frac{\left(\frac{583672 \mathrm{kN}}{1.05}\right)-\left(0.4 \cdot 20 \mathrm{MPa} \cdot 52450 \mathrm{~mm}^{2}\right)}{0.67 \cdot 450 \mathrm{MPa}}$
4) Characteristic Compressive Strength of Concrete given Factored Axial Load in Spiral Columns
$f \times \mathrm{f}_{\mathrm{ck}}=\frac{\left(\frac{\mathrm{P}_{\mathrm{f}}}{1.05}\right)-0.67 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{A}_{\mathrm{st}}}{0.4 \cdot \mathrm{~A}_{\mathrm{c}}}$
$\operatorname{ex} 20 \mathrm{MPa}=\frac{\left(\frac{583672 \mathrm{kN}}{1.05}\right)-0.67 \cdot 450 \mathrm{MPa} \cdot 452 \mathrm{~mm}^{2}}{0.4 \cdot 52450 \mathrm{~mm}^{2}}$
5) Characteristic Strength of Compression Reinforcement given Factored Load in Spiral Columns
$f \mathrm{f} \mathrm{f}_{\mathrm{y}}=\frac{\left(\frac{\mathrm{P}_{\mathrm{f}}}{1.05}\right)-\left(0.4 \cdot \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{A}_{\mathrm{c}}\right)}{0.67 \cdot \mathrm{~A}_{\mathrm{st}}}$
ex $450.0003 \mathrm{MPa}=\frac{\left(\frac{583672 \mathrm{kN}}{1.05}\right)-\left(0.4 \cdot 20 \mathrm{MPa} \cdot 52450 \mathrm{~mm}^{2}\right)}{0.67 \cdot 452 \mathrm{~mm}^{2}}$
6) Diameter of Core given Volume of Core

Open Calculator
$\mathrm{fx} \mathrm{d}_{\mathrm{c}}=\sqrt{4 \cdot \frac{\mathrm{~V}_{\mathrm{c}}}{\pi \cdot \mathrm{P}}}$
ex $150.0002 \mathrm{~mm}=\sqrt{4 \cdot \frac{176715 \mathrm{~m}^{3}}{\pi \cdot 10 \mathrm{~mm}}}$
7) Diameter of Core given Volume of Helical Reinforcement in One Loop
$\mathrm{fx} \mathrm{d}_{\mathrm{c}}=\left(\frac{\mathrm{V}_{\mathrm{h}}}{\pi \cdot \mathrm{A}_{\mathrm{st}}}\right)+\Phi$
ex $150 \mathrm{~mm}=\left(\frac{191700 \mathrm{~m}^{3}}{\pi \cdot 452 \mathrm{~mm}^{2}}\right)+15 \mathrm{~mm}$
8) Diameter of Spiral Reinforcement given Volume of Helical Reinforcement in one Loop
$f \times \Phi=d_{c}-\left(\frac{\mathrm{V}_{\mathrm{h}}}{\pi \cdot \mathrm{A}_{\mathrm{st}}}\right)$
ex $14.99999 \mathrm{~mm}=150 \mathrm{~mm}-\left(\frac{191700 \mathrm{~m}^{3}}{\pi \cdot 452 \mathrm{~mm}^{2}}\right)$
9) Factored Axial Load on Member of Spiral Columns $\sqrt{ }$
$\mathrm{fx} \mathrm{P}_{\mathrm{f}}=1.05 \cdot\left(0.4 \cdot \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{A}_{\mathrm{c}}+0.67 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{A}_{\mathrm{st}}\right)$
Open Calculatore
ex $583671.9 \mathrm{kN}=1.05 \cdot\left(0.4 \cdot 20 \mathrm{MPa} \cdot 52450 \mathrm{~mm}^{2}+0.67 \cdot 450 \mathrm{MPa} \cdot 452 \mathrm{~mm}^{2}\right)$
10) Pitch of Spiral Reinforcement given Volume of Core
$f \mathrm{x} P=\frac{4 \cdot \mathrm{~V}_{\mathrm{c}}}{\pi \cdot \mathrm{d}_{\mathrm{c}}^{2}}$
ex $10.00002 \mathrm{~mm}=\frac{4 \cdot 176715 \mathrm{~m}^{3}}{\pi \cdot(150 \mathrm{~mm})^{2}}$
11) Volume of Core in Short Axially Loaded Columns with Helical Ties
$\mathrm{fx} \mathrm{V}_{\mathrm{c}}=\left(\frac{\pi}{4}\right) \cdot \mathrm{d}_{\mathrm{c}}^{2} \cdot \mathrm{P}$
ex $176714.6 \mathrm{~m}^{3}=\left(\frac{\pi}{4}\right) \cdot(150 \mathrm{~mm})^{2} \cdot 10 \mathrm{~mm}$
12) Volume of Helical Reinforcement in One Loop
$f \mathrm{fx} \mathrm{V}_{\mathrm{h}}=\pi \cdot\left(\mathrm{d}_{\mathrm{c}}-\Phi\right) \cdot \mathrm{A}_{\mathrm{st}}$
ex $191700 \mathrm{~m}^{3}=\pi \cdot(150 \mathrm{~mm}-15 \mathrm{~mm}) \cdot 452 \mathrm{~mm}^{2}$

Short Axially Loaded Tied Columns

13) Area of Concrete given Factored Axial Load on Member
$\mathrm{fx} \mathrm{A}_{\mathrm{c}}=\frac{\mathrm{P}_{\mathrm{fm}}-0.67 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{A}_{\mathrm{st}}}{0.4 \cdot \mathrm{f}_{\mathrm{ck}}}$
ex $52450 \mathrm{~mm}^{2}=\frac{555.878 \mathrm{kN}-0.67 \cdot 450 \mathrm{MPa} \cdot 452 \mathrm{~mm}^{2}}{0.4 \cdot 20 \mathrm{MPa}}$
14) Area of Longitudinal Reinforcement for Columns given Factored Axial Load on Member
$\mathrm{fx} \mathrm{A}_{\mathrm{st}}=\frac{\mathrm{P}_{\mathrm{fm}}-0.4 \cdot \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{A}_{\mathrm{c}}}{0.67 \cdot \mathrm{f}_{\mathrm{y}}}$
Open Calculator ©
ex $-1389.864418 \mathrm{~mm}^{2}=\frac{555.878 \mathrm{kN}-0.4 \cdot 20 \mathrm{MPa} \cdot 52450 \mathrm{~mm}^{2}}{0.67 \cdot 450 \mathrm{MPa}}$
15) Area of Longitudinal Reinforcement given Gross Area of Concrete
$f_{\mathrm{x}} \mathrm{A}_{\mathrm{sc}}=\mathrm{p} \cdot \frac{\mathrm{A}_{\mathrm{g}}}{100}$
ex $30 \mathrm{~mm}^{2}=2 \cdot \frac{1500 \mathrm{~mm}^{2}}{100}$
16) Factored Axial Load on Member
$\mathrm{fx} \mathrm{P}_{\mathrm{fm}}=\left(0.4 \cdot \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{A}_{\mathrm{c}}\right)+\left(0.67 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{A}_{\mathrm{st}}\right)$
Open Calculator
ex $555.878 \mathrm{kN}=\left(0.4 \cdot 20 \mathrm{MPa} \cdot 52450 \mathrm{~mm}^{2}\right)+\left(0.67 \cdot 450 \mathrm{MPa} \cdot 452 \mathrm{~mm}^{2}\right)$
17) Factored Axial Load on Member given Gross Area of Concrete
$f \mathrm{fx} \mathrm{P}_{\mathrm{fm}}=\left(0.4 \cdot \mathrm{f}_{\mathrm{ck}}+\left(\frac{\mathrm{p}}{100}\right) \cdot\left(0.67 \cdot \mathrm{f}_{\mathrm{y}}-0.4 \cdot \mathrm{f}_{\mathrm{ck}}\right)\right) \cdot \mathrm{A}_{\mathrm{g}}$
Open Calculator ©
ex
$20.805 \mathrm{kN}=\left(0.4 \cdot 20 \mathrm{MPa}+\left(\frac{2}{100}\right) \cdot(0.67 \cdot 450 \mathrm{MPa}-0.4 \cdot 20 \mathrm{MPa})\right) \cdot 1500 \mathrm{~mm}^{2}$
18) Gross Area of Concrete given Area of Concrete
$f \mathrm{fx} \mathrm{A}_{\mathrm{g}}=\frac{\mathrm{A}_{\mathrm{c}}}{1-\left(\frac{\mathrm{p}}{100}\right)}$
Open Calculator
ex $53520.41 \mathrm{~mm}^{2}=\frac{52450 \mathrm{~mm}^{2}}{1-\left(\frac{2}{100}\right)}$
19) Gross Area of concrete given Area of Longitudinal Reinforcement
$f \mathrm{f} \mathrm{A}_{\mathrm{g}}=100 \cdot \frac{\mathrm{~A}_{\mathrm{sc}}}{\mathrm{p}}$
Open Calculator ©
ex $1500 \mathrm{~mm}^{2}=100 \cdot \frac{30 \mathrm{~mm}^{2}}{2}$
20) Gross Area of Concrete given Factored Axial Load on Member
$f \mathrm{fx} \mathrm{A}_{\mathrm{g}}=\frac{\mathrm{P}_{\mathrm{fm}}}{0.4 \cdot \mathrm{f}_{\mathrm{ck}}+\left(\frac{\mathrm{p}}{100}\right) \cdot\left(0.67 \cdot \mathrm{f}_{\mathrm{y}}-0.4 \cdot \mathrm{f}_{\mathrm{ck}}\right)}$
Open Calculator
ex $40.07772 \mathrm{~mm}^{2}=\frac{555.878 \mathrm{kN}}{0.4 \cdot 20 \mathrm{MPa}+\left(\frac{2}{100}\right) \cdot(0.67 \cdot 450 \mathrm{MPa}-0.4 \cdot 20 \mathrm{MPa})}$

21) Percentage of Compression Reinforcement given Area of Longitudinal Reinforcement

$$
\mathrm{fx} p=\frac{\mathrm{A}_{\mathrm{sc}}}{\frac{\mathrm{~A}_{\mathrm{g}}}{100}}
$$

$\mathrm{ex} 2=\frac{30 \mathrm{~mm}^{2}}{\frac{1500 \mathrm{~mm}^{2}}{100}}$

Variables Used

- $\mathbf{A}_{\mathbf{c}}$ Area of Concrete (Square Millimeter)
- $\mathbf{A}_{\mathbf{g}}$ Gross Area of Concrete (Square Millimeter)
- $\mathbf{A}_{\mathbf{s c}}$ Area of Steel Reinforcement in Compression (Square Millimeter)
- $\mathbf{A}_{\mathbf{s t}}$ Area of Steel Reinforcement (Square Millimeter)
- $\mathbf{d}_{\mathbf{c}}$ Diameter of Core (Millimeter)
- $\mathbf{f}_{\mathbf{c k}}$ Characteristic Compressive Strength (Megapascal)
- $\mathbf{f}_{\mathbf{y}}$ Characteristic Strength of Steel Reinforcement (Megapascal)
- p Percentage of Compression Reinforcement
- P Pitch of Spiral Reinforcement (Millimeter)
- $\mathbf{P}_{\mathbf{f}}$ Factored Load (Kilonewton)
- \mathbf{P}_{fm} Factored Load on Member (Kilonewton)
- $\mathbf{V}_{\mathbf{c}}$ Volume of Core (Cubic Meter)
- $\mathbf{V}_{\mathbf{h}}$ Volume of Helical Reinforcement (Cubic Meter)
- Ф Diameter of Spiral Reinforcement (Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Millimeter (mm^{2})

Area Unit Conversion

- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Allowable Design for Column Formulas 〔
- Column Base Plate Design Formulas ©.
- Columns of Special Materials Formulas
- Eccentric Loads on Columns Formulas \longleftarrow
- Elastic Flexural Buckling of Columns Formulas
W. Short Axially Loaded Columns with Helical Ties Formulas
- Ultimate Strength Design of Concrete Columns Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

