
calculatoratoz.com

unitsconverters.com

Ride Rate and Ride Frequency for Race Cars Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Ride Rate and Ride Frequency for Race Cars Formulas

Ride Rate and Ride Frequency for Race Cars

 \mathbb{A}1) Front Bump Allowance given Front Ride Rate
$\mathrm{fx}_{\mathrm{x}} \mathrm{x}_{1}=\frac{\Delta \mathrm{W}_{\mathrm{FO}} \cdot[\mathrm{g}]}{\mathrm{K}_{\mathrm{RF}}}$
Open Calculator
ex $0.070001 \mathrm{~m}=\frac{226 \mathrm{~kg} \cdot[\mathrm{~g}]}{31661 \mathrm{~N} / \mathrm{m}}$
2) Front Outside Wheel Load Change given Front Ride Rate
$f \mathrm{x} \Delta \mathrm{W}_{\mathrm{FO}}=\frac{\mathrm{x}_{1} \cdot \mathrm{~K}_{\mathrm{RF}}}{[\mathrm{g}]}$
Open Calculator
ex $225.9966 \mathrm{~kg}=\frac{0.070 \mathrm{~m} \cdot 31661 \mathrm{~N} / \mathrm{m}}{[\mathrm{g}]}$
3) Front Ride Frequency
$\mathrm{fx} \omega_{\mathrm{F}}=\frac{0.5}{\pi} \cdot \sqrt{\frac{\mathrm{~K}_{\mathrm{RF}}}{\mathrm{W}}}$
$\mathrm{ex} 1.320394 \mathrm{~Hz}=\frac{0.5}{\pi} \cdot \sqrt{\frac{31661 \mathrm{~N} / \mathrm{m}}{460 \mathrm{~kg}}}$
4) Front Ride Rate
$\mathrm{fx}_{\mathrm{x}} \mathrm{K}_{\mathrm{RF}}=\frac{\Delta \mathrm{W}_{\mathrm{FO}} \cdot[\mathrm{g}]}{\mathrm{x}_{1}}$
Open Calculator
ex $31661.47 \mathrm{~N} / \mathrm{m}=\frac{226 \mathrm{~kg} \cdot[\mathrm{~g}]}{0.070 \mathrm{~m}}$
5) Front Ride Rate given Front Ride Frequency
$f \mathbf{f x} K_{\mathrm{RF}}=\left(\omega_{\mathrm{F}} \cdot 2 \cdot \pi\right)^{2} \cdot \mathrm{~W}$
ex $32123.35 \mathrm{~N} / \mathrm{m}=(1.33 \mathrm{~Hz} \cdot 2 \cdot \pi)^{2} \cdot 460 \mathrm{~kg}$
6) Load on Front Wheel given Front Ride Frequency
$f \times \mathrm{W}=\frac{\mathrm{K}_{\mathrm{RF}}}{\left(\omega_{\mathrm{F}} \cdot 2 \cdot \pi\right)^{2}}$
ex $453.3792 \mathrm{~kg}=\frac{31661 \mathrm{~N} / \mathrm{m}}{(1.33 \mathrm{~Hz} \cdot 2 \cdot \pi)^{2}}$
7) Load on Rear Wheel given Rear Ride Frequency
$\mathrm{fx} \mathrm{W}=\frac{\mathrm{K}_{\mathrm{RR}}}{\left(\omega_{\mathrm{F}} \cdot 2 \cdot \pi\right)^{2}}$

$$
\mathrm{ex} 454.625 \mathrm{~kg}=\frac{31748 \mathrm{~N} / \mathrm{m}}{(1.33 \mathrm{~Hz} \cdot 2 \cdot \pi)^{2}}
$$

8) Rear Bump Allowance given Rear Ride Rate
$\mathrm{fx} \mathrm{x}_{2}=\frac{\Delta \mathrm{W}_{\mathrm{RO}} \cdot[\mathrm{g}]}{\mathrm{K}_{\mathrm{RR}}}$
Open Calculator
ex $0.05 \mathrm{~m}=\frac{161.87 \mathrm{~kg} \cdot[\mathrm{~g}]}{31748 \mathrm{~N} / \mathrm{m}}$
9) Rear Outside Wheel Load Change given Rear Ride Rate

凹
$\mathrm{fx} \Delta \mathrm{W}_{\mathrm{RO}}=\frac{\mathrm{x}_{2} \cdot \mathrm{~K}_{\mathrm{RR}}}{[\mathrm{g}]}$
ex $161.8698 \mathrm{~kg}=\frac{0.05 \mathrm{~m} \cdot 31748 \mathrm{~N} / \mathrm{m}}{[\mathrm{g}]}$

10) Rear Ride Frequency

$f \mathrm{x} \omega_{\mathrm{F}}=\frac{0.5}{\pi} \cdot \sqrt{\frac{\mathrm{~K}_{\mathrm{RR}}}{\mathrm{W}}}$
$\mathrm{ex} 1.322207 \mathrm{~Hz}=\frac{0.5}{\pi} \cdot \sqrt{\frac{31748 \mathrm{~N} / \mathrm{m}}{460 \mathrm{~kg}}}$
11) Rear Ride Rate
$\mathbf{f x}_{\mathrm{x}}^{\mathrm{KR}}=\frac{\Delta \mathrm{W}_{\mathrm{RO}} \cdot[\mathrm{g}]}{\mathrm{x}_{2}}$
ex $31748.05 \mathrm{~N} / \mathrm{m}=\frac{161.87 \mathrm{~kg} \cdot[\mathrm{~g}]}{0.05 \mathrm{~m}}$
12) Rear Ride Rate given Rear Ride Frequency
$\mathrm{fx}_{\mathrm{x}} \mathrm{K}_{\mathrm{RR}}=\left(\omega_{\mathrm{F}} \cdot 2 \cdot \pi\right)^{2} \cdot \mathrm{~W}$
ex $32123.35 \mathrm{~N} / \mathrm{m}=(1.33 \mathrm{~Hz} \cdot 2 \cdot \pi)^{2} \cdot 460 \mathrm{~kg}$

Variables Used

- \mathbf{K}_{RF} Front Ride Rate (Newton per Meter)
- $\mathbf{K}_{\mathbf{R R}}$ Rear Ride Rate (Newton per Meter)
- W Load on Individual Wheel in Static Condition (Kilogram)
- \mathbf{X}_{1} Front Bump Allowance (Meter)
- \mathbf{X}_{2} Rear Bump Allowance (Meter)
- $\Delta \mathbf{W}_{\text {FO }}$ Front Outside Wheel Change (Kilogram)
- $\Delta \mathbf{W}_{\mathrm{RO}}$ Rear Outside Wheel Change (Kilogram)
- $\boldsymbol{\omega}_{\mathbf{F}}$ Ride Frequency (Hertz)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [g], 9.80665 Meter/Second² Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion

- Measurement: Surface Tension in Newton per Meter (N/m) Surface Tension Unit Conversion

Check other formula lists

- Rates for Axle Suspension in Race Car Formulas
- Ride Rate and Ride Frequency for Race Cars Formulas $\sqrt{5}$
- Vehicle Cornering in Race Cars Formulas
- Weight Transfer during Braking Formulas
Wheel Centre Rates for Independent Suspension
Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

