



# Ride Rate and Ride Frequency for Race Cars Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...





#### List of 12 Ride Rate and Ride Frequency for **Race Cars Formulas**

#### Ride Rate and Ride Frequency for Race Cars

1) Front Bump Allowance given Front Ride Rate 🗗



 $\mathbf{x}_1 = rac{\Delta \mathrm{W_{FO}} \cdot [\mathrm{g}]}{\mathrm{K_{RF}}}$ 

Open Calculator

$$oxed{ex} 0.070001 \mathrm{m} = rac{226 \mathrm{kg} \cdot [\mathrm{g}]}{31661 \mathrm{N/m}}$$

2) Front Outside Wheel Load Change given Front Ride Rate 🗗



Open Calculator

$$extbf{ex} 225.9966 ext{kg} = rac{0.070 ext{m} \cdot 31661 ext{N/m}}{ ext{[g]}}$$





Open Calculator

Open Calculator

Open Calculator

#### 3) Front Ride Frequency 🗲

 $\omega_{
m F} = rac{0.5}{\pi} \cdot \sqrt{rac{{
m K}_{
m RF}}{{
m W}}}$ 

Open Calculator

 $\pi$  V W

ex  $1.320394 \mathrm{Hz} = rac{0.5}{\pi} \cdot \sqrt{rac{31661 \mathrm{N/m}}{460 \mathrm{kg}}}$ 

### 4) Front Ride Rate

 $extbf{K} extbf{K}_{ ext{RF}} = rac{\Delta ext{W}_{ ext{FO}} \cdot [ ext{g}]}{ ext{x}_1}$ 

=  $31661.47 \mathrm{N/m} = \frac{226 \mathrm{kg} \cdot [\mathrm{g}]}{0.070 \mathrm{m}}$ 

# 5) Front Ride Rate given Front Ride Frequency

 $\mathbf{K} \mathbf{K}_{\mathrm{RF}} = (\mathbf{\omega}_{\mathrm{F}} \cdot 2 \cdot \pi)^2 \cdot \mathbf{W}$ 

 $\mathbf{ex} \left[ 32123.35 \mathrm{N/m} = \left( 1.33 \mathrm{Hz} \cdot 2 \cdot \pi \right)^2 \cdot 460 \mathrm{kg} \right]$ 

## 6) Load on Front Wheel given Front Ride Frequency



ex 
$$453.3792 ext{kg} = rac{31661 ext{N/m}}{\left(1.33 ext{Hz} \cdot 2 \cdot \pi\right)^2}$$







#### 7) Load on Rear Wheel given Rear Ride Frequency



Open Calculator 🗗

ex 
$$454.625 \text{kg} = \frac{31748 \text{N/m}}{\left(1.33 \text{Hz} \cdot 2 \cdot \pi\right)^2}$$

#### 8) Rear Bump Allowance given Rear Ride Rate



Open Calculator

$$=$$
  $0.05 \mathrm{m} = rac{161.87 \mathrm{kg} \cdot [\mathrm{g}]}{31748 \mathrm{N/m}}$ 

#### 9) Rear Outside Wheel Load Change given Rear Ride Rate



Open Calculator 🗗

$$oxed{egin{align*} ext{ex} 161.8698 ext{kg} = rac{0.05 ext{m} \cdot 31748 ext{N/m}}{[ ext{g}]} \end{split}}$$



#### 10) Rear Ride Frequency



Open Calculator

ex 
$$1.322207 ext{Hz} = rac{0.5}{\pi} \cdot \sqrt{rac{31748 ext{N/m}}{460 ext{kg}}}$$

#### 11) Rear Ride Rate



Open Calculator

$$= \frac{31748.05 \text{N/m} = \frac{161.87 \text{kg} \cdot [\text{g}]}{0.05 \text{m}} }$$

# 12) Rear Ride Rate given Rear Ride Frequency



Open Calculator 🗗

 $\mathbf{ex} [32123.35 \mathrm{N/m} = (1.33 \mathrm{Hz} \cdot 2 \cdot \pi)^2 \cdot 460 \mathrm{kg}]$ 



#### Variables Used

- **K**<sub>RF</sub> Front Ride Rate (Newton per Meter)
- KRR Rear Ride Rate (Newton per Meter)
- W Load on Individual Wheel in Static Condition (Kilogram)
- X<sub>1</sub> Front Bump Allowance (Meter)
- X<sub>2</sub> Rear Bump Allowance (Meter)
- ΔW<sub>FO</sub> Front Outside Wheel Change (Kilogram)
- ΔW<sub>RO</sub> Rear Outside Wheel Change (Kilogram)
- **ω**<sub>F</sub> Ride Frequency (Hertz)





#### Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
   Archimedes' constant
- Constant: [g], 9.80665 Meter/Second<sup>2</sup>

  Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)
   Square root function
- Measurement: Length in Meter (m)
  Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
   Weight Unit Conversion
- Measurement: Frequency in Hertz (Hz)
   Frequency Unit Conversion
- Measurement: Surface Tension in Newton per Meter (N/m)

  Surface Tension Unit Conversion





#### Check other formula lists

- Rates for Axle Suspension in Race Car Formulas
- Ride Rate and Ride Frequency for Wheel Centre Rates for Race Cars Formulas [
- Vehicle Cornering in Race Cars Formulas Formulas
- Weight Transfer during Braking Formulas C
- **Independent Suspension**

Feel free to SHARE this document with your friends!

#### PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/8/2023 | 9:00:59 PM UTC

Please leave your feedback here...



