

Rates for Axle Suspension in Race Car Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Rates for Axle Suspension in Race Car Formulas

Rates for Axle Suspension in Race Car

1) Rear Track Width given Roll Rate

 $\mathbf{K} \left[t_{\mathrm{R}} = \sqrt{ \left. rac{K_{\Phi} \cdot K_{\mathrm{w}} \cdot \overline{T_{\mathrm{s}}^{2}}}{\left(K_{\mathrm{w}} \cdot rac{T_{\mathrm{s}}^{2}}{2} - K_{\Phi}
ight) \cdot K_{\mathrm{t}} }
ight]}$

Open Calculator

$$= \sqrt{\frac{10297.43 \text{Nm/rad} \cdot 30366.46 \text{N/m} \cdot (0.9 \text{m})^2}{\left(30366.46 \text{N/m} \cdot \frac{(0.9 \text{m})^2}{2} - 10297.43 \text{Nm/rad}\right) \cdot 321300 \text{N/m}} }$$

2) Rear Track Width given Roll Rate of Suspension with Anti-Roll Bar

Open Calculator

ex

$$0.4 m = \sqrt{2 \cdot \frac{10297.43 Nm/rad \cdot \left(4881.6 Nm/rad + 30366.46 N/m \cdot \frac{(0.9 m)^2}{2}\right)}{\left(4881.6 Nm/rad + 30366.46 N/m \cdot \frac{(0.9 m)^2}{2} - 10297.43 Nm/rad\right) \cdot 321300 N/m}}$$

3) Roll Rate

$$K_{\Phi}=rac{K_{
m t}\cdotrac{t_{
m R}^2}{2}\cdot K_{
m w}\cdotrac{T_{
m s}^2}{2}}{K_{
m t}\cdotrac{t_{
m R}^2}{2}+K_{
m w}\cdotrac{T_{
m s}^2}{2}}$$

4) Roll Rate with Anti-Roll Bar

 $K_{\Phi} = rac{K_{ ext{t}} \cdot rac{ ext{t}_{ ext{R}}^2}{2} \cdot \left(R_{ ext{arb}} + K_{ ext{w}} \cdot rac{T_{ ext{s}}^2}{2}
ight)}{K_{ ext{t}} \cdot rac{ ext{t}_{ ext{R}}^2}{2} + R_{ ext{arb}} + K_{ ext{w}} \cdot rac{T_{ ext{s}}^2}{2}}$

Open Calculator 🗗

$$\boxed{ \textbf{ex} \ 10297.43 \text{Nm/rad} = \frac{321300 \text{N/m} \cdot \frac{(0.4 \text{m})^2}{2} \cdot \left(4881.6 \text{Nm/rad} + 30366.46 \text{N/m} \cdot \frac{(0.9 \text{m})^2}{2}\right)}{321300 \text{N/m} \cdot \frac{(0.4 \text{m})^2}{2} + 4881.6 \text{Nm/rad} + 30366.46 \text{N/m} \cdot \frac{(0.9 \text{m})^2}{2}}{2} }$$

5) Spring Track Width given Roll Rate

 $\left| \mathbf{T}_{s} = \sqrt{ rac{K_{\Phi} \cdot K_{t} \cdot t_{R}^{2}}{\left(K_{t} \cdot rac{t_{R}^{2}}{2} - K_{\Phi}
ight) \cdot K_{w}} }
ight|}$

Open Calculator

$$= \sqrt{\frac{10297.43 \text{Nm/rad} \cdot 321300 \text{N/m} \cdot (0.4 \text{m})^2}{\left(321300 \text{N/m} \cdot \frac{(0.4 \text{m})^2}{2} - 10297.43 \text{Nm/rad}\right) \cdot 30366.46 \text{N/m}} }$$

6) Spring Track Width given Roll Rate of Suspension with Anti-Roll Bar

 $T_{
m s} = \sqrt{2 \cdot \left(rac{rac{K_{\Phi} \cdot K_{
m t} \cdot rac{t_{
m R}^2}{2}}{\left(K_{
m t} \cdot rac{t_{
m R}^2}{2} - K_{
m \Phi}
ight)} - R_{
m arb}}}{K_{
m W}}
ight)}$

$$\boxed{ 2 \cdot \left(\frac{\frac{10297.43 \mathrm{Nm/rad \cdot } 321300 \mathrm{N/m \cdot } \frac{(0.4 \mathrm{m})^2}{2}}{\left(321300 \mathrm{N/m \cdot } \frac{(0.4 \mathrm{m})^2}{2} - 10297.43 \mathrm{Nm/rad} \right)} - 4881.6 \mathrm{Nm/rad} }{30366.46 \mathrm{N/m}} \right) }$$

7) Tyre Rate given Roll Rate

 $K_{\mathrm{t}} = rac{K_{\Phi} \cdot \left(K_{\mathrm{w}} \cdot rac{T_{\mathrm{s}}^2}{2}
ight)}{\left(K_{\mathrm{w}} \cdot rac{T_{\mathrm{s}}^2}{2} - K_{\Phi}
ight) \cdot rac{t_{\mathrm{R}}^2}{2}}$

Open Calculator 🗗

8) Tyre Rate given Roll Rate of Suspension with Anti-Roll Bar

 $K_{t} = rac{K_{\Phi} \cdot \left(R_{arb} + K_{w} \cdot rac{T_{s}^{2}}{2}
ight)}{\left(R_{arb} + K_{w} \cdot rac{T_{s}^{2}}{2} - K_{\Phi}
ight) \cdot rac{t_{R}^{2}}{2}}$

Open Calculator

$$\boxed{ \mathbf{ex} \\ 321300 \mathrm{N/m} = \frac{10297.43 \mathrm{Nm/rad} \cdot \left(4881.6 \mathrm{Nm/rad} + 30366.46 \mathrm{N/m} \cdot \frac{(0.9 \mathrm{m})^2}{2}\right) }{\left(4881.6 \mathrm{Nm/rad} + 30366.46 \mathrm{N/m} \cdot \frac{(0.9 \mathrm{m})^2}{2} - 10297.43 \mathrm{Nm/rad}\right) \cdot \frac{(0.4 \mathrm{m})^2}{2} } }$$

9) Vertical Tyre Axle Rate given Roll Rate

$$\boxed{ 12291.76 \text{N/m} = \frac{10297.43 \text{Nm/rad} \cdot 321300 \text{N/m} \cdot \frac{(0.4 \text{m})^2}{2}}{321300 \text{N/m} \cdot \frac{(0.4 \text{m})^2}{2} - 10297.43 \text{Nm/rad} \cdot \frac{(0.9 \text{m})^2}{2}} } }$$

10) Vertical Tyre Axle Rate given Roll Rate of Suspension with Anti-Roll Bar 🗗

$$= \frac{\frac{10297.43 \text{Nm/rad} \cdot 321300 \text{N/m} \cdot \frac{(0.4 \text{m})^2}{2}}{321300 \text{N/m} \cdot \frac{(0.4 \text{m})^2}{2} - 10297.43 \text{Nm/rad}} - 4881.6 \text{Nm/rad}}{\frac{(0.9 \text{m})^2}{2}}$$

Variables Used

- K_t Tyre Vertical Rate (Newton per Meter)
- Kw Wheel Centre Rate (Newton per Meter)
- K_Φ Roll Rate (Newton Meter per Radian)
- Rarb Roll Rate of Anti-Roll Bar (Newton Meter per Radian)
- t_R Rear Track Width (Meter)
- T_S Spring Track Width (Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Surface Tension in Newton per Meter (N/m)
 Surface Tension Unit Conversion
- Measurement: Torsion Constant in Newton Meter per Radian (Nm/rad)

 Torsion Constant Unit Conversion

Check other formula lists

- Rates for Axle Suspension in Race Car Formulas
- Ride Rate and Ride Frequency for Race Cars Formulas
- Vehicle Cornering in Race Cars Formulas
- Weight Transfer during Braking Formulas
- Wheel Centre Rates for Independent Suspension Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/12/2024 | 5:58:50 AM UTC

Please leave your feedback here...

