Rates for Axle Suspension in Race Car Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Rates for Axle Suspension in Race Car Formulas

Rates for Axle Suspension in Race Car ©

1) Rear Track Width given Roll Rate
$f \mathbf{x} \mathrm{t}_{\mathrm{R}}=\sqrt{\frac{\mathrm{K}_{\Phi} \cdot \mathrm{K}_{\mathrm{W}} \cdot \mathrm{T}_{\mathrm{s}}^{2}}{\left(\mathrm{~K}_{\mathrm{W}} \cdot \frac{\mathrm{T}_{\mathrm{s}}^{2}}{2}-\mathrm{K}_{\Phi}\right) \cdot \mathrm{K}_{\mathrm{t}}}}$
$\operatorname{ex} 0.484635 \mathrm{~m}=\sqrt{\frac{11805 \mathrm{Nm} / \mathrm{rad} \cdot 42419.8 \mathrm{~N} / \mathrm{m} \cdot(0.9 \mathrm{~m})^{2}}{\left(42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}-11805 \mathrm{Nm} / \mathrm{rad}\right) \cdot 321300 \mathrm{~N} / \mathrm{m}}}$
2) Rear Track Width given Roll Rate of Suspension with Anti-Roll Bar
$\boldsymbol{f x}_{\mathrm{t}}^{\mathrm{t}}=\sqrt{2 \cdot \frac{\mathrm{~K}_{\Phi} \cdot\left(\mathrm{R}_{\mathrm{arb}}+\mathrm{K}_{\mathrm{W}} \cdot \frac{\left(\mathrm{T}_{\mathrm{s}}\right)^{2}}{2}\right)}{\left(\mathrm{R}_{\mathrm{arb}}+\mathrm{K}_{\mathrm{W}} \cdot \frac{\mathrm{T}_{\mathrm{s}}^{2}}{2}-\mathrm{K}_{\Phi}\right) \cdot \mathrm{K}_{\mathrm{t}}}}$
$0.397566 \mathrm{~m}=\sqrt{2 \cdot \frac{11805 \mathrm{Nm} / \mathrm{rad} \cdot\left(4881.6 \mathrm{Nm} / \mathrm{rad}+42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}\right)}{\left(4881.6 \mathrm{Nm} / \mathrm{rad}+42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}-11805 \mathrm{Nm} / \mathrm{rad}\right) \cdot 321300 \mathrm{~N} / \mathrm{m}}}$
3) Roll Rate
$f \times K_{\Phi}=\frac{K_{t} \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2} \cdot K_{W} \cdot \frac{\mathrm{~T}_{\mathrm{s}}^{2}}{2}}{K_{\mathrm{t}} \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2}+K_{W} \cdot \frac{\mathrm{~T}_{\mathrm{s}}^{2}}{2}}$
ex $16400.52 \mathrm{Nm} / \mathrm{rad}=\frac{321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2} \cdot 42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}}{321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}+42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}}$
4) Roll Rate with Anti-Roll Bar
$f \times K_{\Phi}=\frac{K_{\mathrm{t}} \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2}+\mathrm{R}_{\mathrm{arb}}+\mathrm{K}_{\mathrm{W}} \cdot \frac{\mathrm{T}_{\mathrm{s}}^{2}}{2}}{\mathrm{~K}^{2}}$
ex $20792.56 \mathrm{Nm} / \mathrm{rad}=\frac{321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2} \cdot\left(4881.6 \mathrm{Nm} / \mathrm{rad}+42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}\right)}{321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}+4881.6 \mathrm{Nm} / \mathrm{rad}+42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}}$

5) Spring Track Width given Roll Rate

$f \mathbf{x} \mathrm{~T}_{\mathrm{s}}=\sqrt{\frac{\mathrm{K}_{\Phi} \cdot \mathrm{K}_{\mathrm{t}} \cdot \mathrm{t}_{\mathrm{R}}^{2}}{\left(\mathrm{~K}_{\mathrm{t}} \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2}-\mathrm{K}_{\Phi}\right) \cdot \mathrm{K}_{\mathrm{W}}}}$

$$
-
$$

ex $0.758532 \mathrm{~m}=\sqrt{\frac{11805 \mathrm{Nm} / \mathrm{rad} \cdot 321300 \mathrm{~N} / \mathrm{m} \cdot(1.5 \mathrm{~m})^{2}}{\left(321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}-11805 \mathrm{Nm} / \mathrm{rad}\right) \cdot 42419.8 \mathrm{~N} / \mathrm{m}}}$
6) Spring Track Width given Roll Rate of Suspension with Anti-Roll Bar

ex $0.587549 \mathrm{~m}=$
$\sqrt{2 \cdot\left(\frac{\frac{11805 \mathrm{Nm} / \mathrm{rad} \cdot 321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}}{\left(321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}-11805 \mathrm{Nm} / \mathrm{rad}\right)}-4881.6 \mathrm{Nm} / \mathrm{rad}}{42419.8 \mathrm{~N} / \mathrm{m}}\right)}$
7) Tyre Rate given Roll Rate 〔
$f_{\mathrm{x}} \mathrm{K}_{\mathrm{t}}=\frac{\mathrm{K}_{\Phi} \cdot\left(\mathrm{K}_{\mathrm{W}} \cdot \frac{\mathrm{T}_{\mathrm{s}}^{2}}{2}\right)}{\left(\mathrm{K}_{\mathrm{W}} \cdot \frac{\mathrm{T}_{\mathrm{s}}^{2}}{2}-\mathrm{K}_{\Phi}\right) \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2}}$
ex $33539.54 \mathrm{~N} / \mathrm{m}=\frac{11805 \mathrm{Nm} / \mathrm{rad} \cdot\left(42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}\right)}{\left(42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}-11805 \mathrm{Nm} / \mathrm{rad}\right) \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}}$
8) Tyre Rate given Roll Rate of Suspension with Anti-Roll Bar
$f_{x} K_{t}=\frac{K_{\Phi} \cdot\left(R_{a r b}+K_{W} \cdot \frac{T_{s}^{2}}{2}\right)}{\left(R_{\text {arb }}+K_{W} \cdot \frac{\mathrm{~T}_{\mathrm{s}}^{2}}{2}-K_{\Phi}\right) \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2}}$
Open Calculator
$22570.78 \mathrm{~N} / \mathrm{m}=\frac{11805 \mathrm{Nm} / \mathrm{rad} \cdot\left(4881.6 \mathrm{Nm} / \mathrm{rad}+42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}\right)}{\left(4881.6 \mathrm{Nm} / \mathrm{rad}+42419.8 \mathrm{~N} / \mathrm{m} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}-11805 \mathrm{Nm} / \mathrm{rad}\right) \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}}$
9) Vertical Tyre Axle Rate given Roll Rate
$\mathrm{fx} \mathrm{K}_{\mathrm{W}}=\frac{\mathrm{K}_{\Phi} \cdot \mathrm{K}_{\mathrm{t}} \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2}}{\mathrm{~K}_{\mathrm{t}} \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2}-\mathrm{K}_{\Phi} \cdot \frac{\mathrm{T}_{\mathrm{s}}^{2}}{2}}$
ex $11963.24 \mathrm{~N} / \mathrm{m}=\frac{11805 \mathrm{Nm} / \mathrm{rad} \cdot 321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}}{321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}-11805 \mathrm{Nm} / \mathrm{rad} \cdot \frac{(0.9 \mathrm{~m})^{2}}{2}}$
10) Vertical Tyre Axle Rate given Roll Rate of Suspension with Anti-Roll Bar
$f \mathbf{f x} K_{W}=\frac{\frac{K_{\Phi} \cdot K_{\mathrm{t}} \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2}}{\mathrm{~K}_{\mathrm{t}} \cdot \frac{\mathrm{t}_{\mathrm{R}}^{2}}{2}-\mathrm{K}_{\Phi}}-R_{\mathrm{arb}}}{\frac{\mathrm{T}_{\mathrm{s}}^{2}}{2}}$
ex $18078.9 \mathrm{~N} / \mathrm{m}=\frac{\frac{11805 \mathrm{Nm} / \mathrm{rad} \cdot 321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}}{321300 \mathrm{~N} / \mathrm{m} \cdot \frac{(1.5 \mathrm{~m})^{2}}{2}-11805 \mathrm{Nm} / \mathrm{rad}}-4881.6 \mathrm{Nm} / \mathrm{rad}}{\frac{(0.9 \mathrm{~m})^{2}}{2}}$

Variables Used

- $\mathbf{K}_{\mathbf{t}}$ Tyre Vertical Rate (Newton per Meter)
- $\mathbf{K}_{\mathbf{W}}$ Wheel Centre Rate (Newton per Meter)
- \mathbf{K}_{Φ} Roll Rate (Newton Meter per Radian)
- $\mathbf{R a r b}_{\text {arb }}$ Roll Rate of Anti-Roll Bar (Newton Meter per Radian)
- $\mathbf{t}_{\mathbf{R}}$ Rear Track Width (Meter)
- $\mathbf{T}_{\mathbf{S}}$ Spring Track Width (Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Surface Tension in Newton per Meter (N/m)

Surface Tension Unit Conversion

- Measurement: Torsion Constant in Newton Meter per Radian (Nm/rad) Torsion Constant Unit Conversion U

Check other formula lists

- Rates for Axle Suspension in Race Car Formulas
- Ride Rate and Ride Frequency for Race Cars Formulas $\sqrt{ }$
- Vehicle Cornering in Race Cars Formulas \mathbb{S}
- Weight Transfer during Braking Formulas
- Wheel Centre Rates for Independent Suspension Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

