

Rates for Axle Suspension in Race Car Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Rates for Axle Suspension in Race Car Formulas

Rates for Axle Suspension in Race Car

1) Rear Track Width given Roll Rate

 $\mathbf{f}_{\mathrm{R}} = \sqrt{rac{\mathrm{K}_{\Phi} \cdot \mathrm{K}_{\mathrm{W}} \cdot \mathrm{T}_{\mathrm{s}}^{2}}{\left(\mathrm{K}_{\mathrm{W}} \cdot rac{\mathrm{T}_{\mathrm{s}}^{2}}{2} - \mathrm{K}_{\Phi}
ight) \cdot \mathrm{K}_{\mathrm{t}}}}$

Open Calculator

2) Rear Track Width given Roll Rate of Suspension with Anti-Roll Bar

 $t_R = \sqrt{2 \cdot rac{K_\Phi \cdot \left(R_{arb} + K_W \cdot rac{(T_s)^2}{2}
ight)}{\left(R_{arb} + K_W \cdot rac{T_s^2}{2} - K_\Phi
ight) \cdot K_t}}$

Open Calculator 🗗

ex

$$0.397566 m = \sqrt{2 \cdot \frac{11805 Nm/rad \cdot \left(4881.6 Nm/rad + 42419.8 N/m \cdot \frac{(0.9 m)^2}{2}\right)}{\left(4881.6 Nm/rad + 42419.8 N/m \cdot \frac{(0.9 m)^2}{2} - 11805 Nm/rad\right) \cdot 321300 N/m}}$$

3) Roll Rate

 $K_{\Phi} = rac{K_{
m t} \cdot rac{{
m t}_{
m R}^2}{2} \cdot K_{
m W} \cdot rac{{
m T}_{
m s}^2}{2}}{K_{
m t} \cdot rac{{
m t}_{
m R}^2}{2} + K_{
m W} \cdot rac{{
m T}_{
m s}^2}{2}}$

Open Calculator 🛂

$$\boxed{ \mathbf{ex} \ 16400.52 \mathrm{Nm/rad} = \frac{321300 \mathrm{N/m} \cdot \frac{(1.5\mathrm{m})^2}{2} \cdot 42419.8 \mathrm{N/m} \cdot \frac{(0.9\mathrm{m})^2}{2} }{321300 \mathrm{N/m} \cdot \frac{(1.5\mathrm{m})^2}{2} + 42419.8 \mathrm{N/m} \cdot \frac{(0.9\mathrm{m})^2}{2} } }$$

4) Roll Rate with Anti-Roll Bar 🚰

 $K_{\Phi} = rac{K_t \cdot rac{t_R^2}{2} \cdot \left(R_{arb} + K_W \cdot rac{T_s^2}{2}
ight)}{K_t \cdot rac{t_R^2}{2} + R_{arb} + K_W \cdot rac{T_s^2}{2}}$

Open Calculator

5) Spring Track Width given Roll Rate

 $T_{s} = \sqrt{rac{K_{\Phi} \cdot K_{t} \cdot t_{R}^{2}}{\left(K_{t} \cdot rac{t_{R}^{2}}{2} - K_{\Phi}
ight) \cdot K_{W}}}$

Open Calculator

6) Spring Track Width given Roll Rate of Suspension with Anti-Roll Bar

 $T_{
m s} = \sqrt{2 \cdot \left(rac{rac{K_{\Phi} \cdot K_{
m t} \cdot rac{t_{
m R}^2}{2}}{\left(K_{
m t} \cdot rac{t_{
m R}^2}{2} - K_{
m \Phi}
ight)} - R_{
m arb}}}{K_{
m W}}
ight)}$

Open Calculator

 $= \sqrt{2 \cdot \left(\frac{\frac{11805 \text{Nm/rad} \cdot 321300 \text{N/m} \cdot \frac{(1.5 \text{m})^2}{2}}{\left(321300 \text{N/m} \cdot \frac{(1.5 \text{m})^2}{2} - 11805 \text{Nm/rad}\right)} - 4881.6 \text{Nm/rad}}{42419.8 \text{N/m}} \right) }$

7) Tyre Rate given Roll Rate

 $K_{
m t} = rac{K_{\Phi} \cdot \left(K_{
m W} \cdot rac{T_{
m s}^2}{2}
ight)}{\left(K_{
m W} \cdot rac{T_{
m s}^2}{2} - K_{\Phi}
ight) \cdot rac{t_{
m R}^2}{2}}$

Open Calculator 🗗

8) Tyre Rate given Roll Rate of Suspension with Anti-Roll Bar

 $K_{
m t} = rac{K_{\Phi} \cdot \left(R_{
m arb} + K_{
m W} \cdot rac{T_{
m s}^2}{2}
ight)}{\left(R_{
m arb} + K_{
m W} \cdot rac{T_{
m s}^2}{2} - K_{\Phi}
ight) \cdot rac{t_{
m R}^2}{2}}$

Open Calculator

9) Vertical Tyre Axle Rate given Roll Rate

Open Calculator

$$\boxed{ 11963.24 \text{N/m} = \frac{11805 \text{Nm/rad} \cdot 321300 \text{N/m} \cdot \frac{(1.5\text{m})^2}{2}}{321300 \text{N/m} \cdot \frac{(1.5\text{m})^2}{2} - 11805 \text{Nm/rad} \cdot \frac{(0.9\text{m})^2}{2}} } }$$

10) Vertical Tyre Axle Rate given Roll Rate of Suspension with Anti-Roll Bar 🗗

Open Calculator

$$= \frac{18078.9 \text{N/m}}{18078.9 \text{N/m}} = \frac{\frac{11805 \text{Nm/rad} \cdot 321300 \text{N/m} \cdot \frac{(1.5 \text{m})^2}{2}}{321300 \text{N/m} \cdot \frac{(1.5 \text{m})^2}{2} - 11805 \text{Nm/rad}} - 4881.6 \text{Nm/rad}}{\frac{(0.9 \text{m})^2}{2}}$$

Variables Used

- K_t Tyre Vertical Rate (Newton per Meter)
- Kw Wheel Centre Rate (Newton per Meter)
- K_♠ Roll Rate (Newton Meter per Radian)
- Rarb Roll Rate of Anti-Roll Bar (Newton Meter per Radian)
- t_R Rear Track Width (Meter)
- T_S Spring Track Width (Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Surface Tension in Newton per Meter (N/m) Surface Tension Unit Conversion
- Measurement: Torsion Constant in Newton Meter per Radian (Nm/rad)

 Torsion Constant Unit Conversion

Check other formula lists

- Rates for Axle Suspension in Race Car Formulas
- Ride Rate and Ride Frequency for Race Cars Wheel Centre Rates for Independent Formulas
- Vehicle Cornering in Race Cars Formulas
- Weight Transfer during Braking Formulas
 - Suspension Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/8/2023 | 4:41:09 PM UTC

Please leave your feedback here...

