
calculatoratoz.com

unitsconverters.com

Rear Wheel Braking for Racing Car Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Rear Wheel Braking for Racing Car Formulas

Rear Wheel Braking for Racing Car

Effects on Front Wheel (FW)

1) Friction Coefficient between Wheel and Road Surface on Front Wheel
$f \mathrm{x} \mu=\frac{\mathrm{W} \cdot(\mathrm{b}-\mathrm{x}) \cdot \frac{\cos (\theta)}{\mathrm{R}_{\mathrm{F}}}-\mathrm{b}}{\mathrm{h}}$
Open Calculator ©
$\mathrm{ex} 0.456032=\frac{13000 \mathrm{~N} \cdot(2.7 \mathrm{~m}-1.2 \mathrm{~m}) \cdot \frac{\cos \left(10^{\circ}\right)}{7103 \mathrm{~N}}-2.7 \mathrm{~m}}{0.007919 \mathrm{~m}}$
2) Height of C.G. from Road Surface on Front Wheel

$\operatorname{ex} 0.007524 \mathrm{~m}=\frac{13000 \mathrm{~N} \cdot(2.7 \mathrm{~m}-1.2 \mathrm{~m}) \cdot \frac{\cos \left(10^{\circ}\right)}{7103 \mathrm{~N}}-2.7 \mathrm{~m}}{0.48}$
3) Horizontal Distance of C.G from Rear Axle on Front Wheel
$f x x=(b-\mu \cdot h)-R_{F} \cdot \frac{b-\mu \cdot h}{W \cdot \cos (\theta)}$
Open Calculator
ex
$1.200311 \mathrm{~m}=(2.7 \mathrm{~m}-0.48 \cdot 0.007919 \mathrm{~m})-7103 \mathrm{~N} \cdot \frac{2.7 \mathrm{~m}-0.48 \cdot 0.007919 \mathrm{~m}}{13000 \mathrm{~N} \cdot \cos \left(10^{\circ}\right)}$

4) Normal Reaction Force at Front Wheel

$f_{\mathrm{x}} \mathrm{R}_{\mathrm{F}}=\mathrm{W} \cdot(\mathrm{b}-\mathrm{x}) \cdot \frac{\cos (\theta)}{\mathrm{b}+\mu \cdot \mathrm{h}}$
ex $7102.501 \mathrm{~N}=13000 \mathrm{~N} \cdot(2.7 \mathrm{~m}-1.2 \mathrm{~m}) \cdot \frac{\cos \left(10^{\circ}\right)}{2.7 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}$
5) Slope of Road on Front Wheel
$\mathrm{fx} \theta=a \cos \left(\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{W} \cdot \frac{\mathrm{b}-\mathrm{x}}{\mathrm{b}+\mu \cdot \mathrm{h}}}\right)$
Open Calculator
ex $9.977162^{\circ}=a \cos \left(\frac{7103 \mathrm{~N}}{13000 \mathrm{~N} \cdot \frac{2.7 \mathrm{~m}-1.2 \mathrm{~m}}{2.7 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}}\right)$
6) Weight of Vehicle on Front Wheel
$f \mathbf{f x}=\frac{R_{F}}{(b-x) \cdot \frac{\cos (\theta)}{b+\mu \cdot h}}$
Open Calculator
ex $13000.91 \mathrm{~N}=\frac{7103 \mathrm{~N}}{(2.7 \mathrm{~m}-1.2 \mathrm{~m}) \cdot \frac{\cos \left(10^{\circ}\right)}{2.7 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}}$
7) Wheel Base on Front Wheel
$f \mathbf{x} \mathrm{~b}=\frac{\mathrm{R}_{\mathrm{F}} \cdot \mu \cdot \mathrm{h}+\mathrm{W} \cdot \mathrm{x} \cdot \cos (\theta)}{\mathrm{W} \cdot \cos (\theta)-\mathrm{R}_{\mathrm{F}}}$
Open Calculator
ex $2.700237 \mathrm{~m}=\frac{7103 \mathrm{~N} \cdot 0.48 \cdot 0.007919 \mathrm{~m}+13000 \mathrm{~N} \cdot 1.2 \mathrm{~m} \cdot \cos \left(10^{\circ}\right)}{13000 \mathrm{~N} \cdot \cos \left(10^{\circ}\right)-7103 \mathrm{~N}}$

Effects on Rear Wheel (RW)

8) Braking Retardation on Rear Wheel
$\mathrm{fx} \mathrm{a}=[\mathrm{g}] \cdot\left(\frac{\mu \cdot(\mathrm{b}-\mathrm{x}) \cdot \cos (\theta)}{\mathrm{b}+\mu \cdot \mathrm{h}}-\sin (\theta)\right)$
ex $0.86885 \mathrm{~m} / \mathrm{s}^{2}=[\mathrm{g}] \cdot\left(\frac{0.48 \cdot(2.7 \mathrm{~m}-1.2 \mathrm{~m}) \cdot \cos \left(10^{\circ}\right)}{2.7 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}-\sin \left(10^{\circ}\right)\right)$
9) Friction Coefficient between Wheel and Road Surface on Rear Wheel
$\mathrm{fx} \mu=\frac{\mathrm{R}_{\mathrm{R}} \cdot \mathrm{b}-\mathrm{W} \cdot \mathrm{x} \cdot \cos (\theta)}{\mathrm{h} \cdot\left(\mathrm{W} \cdot \cos (\theta)-\mathrm{R}_{\mathrm{R}}\right)}$
Open Calculator
ex $0.480028=\frac{5700 \mathrm{~N} \cdot 2.7 \mathrm{~m}-13000 \mathrm{~N} \cdot 1.2 \mathrm{~m} \cdot \cos \left(10^{\circ}\right)}{0.007919 \mathrm{~m} \cdot\left(13000 \mathrm{~N} \cdot \cos \left(10^{\circ}\right)-5700 \mathrm{~N}\right)}$
10) Friction Coefficient using Retardation on Rear Wheel

$$
\left(\frac{\mathrm{a}}{[\mathrm{~g}]}+\sin (\theta)\right) \cdot \mathrm{b}
$$

Open Calculator
$\mathrm{fx} \mu=\frac{(\mathrm{x}-\mathrm{x}) \cdot \cos (\theta)-\left(\left(\frac{\mathrm{a}}{[\mathrm{g}]}+\sin (\theta)\right) \cdot \mathrm{h}\right)}{(\mathrm{b})}$

$$
\left(\frac{0.86885 \mathrm{~m} / \mathrm{s}^{2}}{[\mathrm{~g}]}+\sin \left(10^{\circ}\right)\right) \cdot 2.7 \mathrm{~m}
$$

$$
(2.7 \mathrm{~m}-1.2 \mathrm{~m}) \cdot \cos \left(10^{\circ}\right)-\left(\left(\frac{0.86885 \mathrm{~m} / \mathrm{s}^{2}}{[\mathrm{~g}]}+\sin \left(10^{\circ}\right)\right) \cdot 0.007919 \mathrm{~m}\right)
$$

11) Height of C.G. from Road Surface on Rear Wheel
$\mathrm{f}_{\mathrm{x}} \mathrm{h}=\frac{\mathrm{R}_{\mathrm{R}} \cdot \mathrm{b}-\mathrm{W} \cdot \mathrm{x} \cdot \cos (\theta)}{\mu \cdot\left(\mathrm{W} \cdot \cos (\theta)-\mathrm{R}_{\mathrm{R}}\right)}$
Open Calculator ©
ex $0.007919 \mathrm{~m}=\frac{5700 \mathrm{~N} \cdot 2.7 \mathrm{~m}-13000 \mathrm{~N} \cdot 1.2 \mathrm{~m} \cdot \cos \left(10^{\circ}\right)}{0.48 \cdot\left(13000 \mathrm{~N} \cdot \cos \left(10^{\circ}\right)-5700 \mathrm{~N}\right)}$
12) Height of C.G. using Retardation on Rear Wheel
$\mathbf{f x} h=\frac{\frac{\mu \cdot(\mathrm{b}-\mathrm{x}) \cdot \cos (\theta)}{\left(\frac{\mathrm{a}}{[\mathrm{g}]}\right)+\sin (\theta)}-\mathrm{b}}{\mu}$
Open Calculator
$\operatorname{ex} 0.007919 \mathrm{~m}=\frac{\frac{0.48 \cdot(2.7 \mathrm{~m}-1.2 \mathrm{~m}) \cdot \cos \left(10^{\circ}\right)}{\left(\frac{0.8685 \mathrm{~m} / \mathrm{s}^{2}}{[\mathrm{~s}]}\right)+\sin \left(10^{\circ}\right)}-2.7 \mathrm{~m}}{0.48}$
13) Horizontal Distance of C.G. from Rear Axle on Rear Wheel
$f x \quad x=R_{R} \cdot \frac{b+\mu \cdot h}{W \cdot \cos (\theta)}-\mu \cdot h$
Open Calculator ©
ex $1.2 \mathrm{~m}=5700 \mathrm{~N} \cdot \frac{2.7 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}{13000 \mathrm{~N} \cdot \cos \left(10^{\circ}\right)}-0.48 \cdot 0.007919 \mathrm{~m}$
14) Horizontal Distance of C.G. using Retardation on Rear Wheel Ψ
$f \mathbf{x} \mathbf{x}=\mathrm{b}-\left(\left(\frac{\mathrm{a}}{[\mathrm{g}]}+\sin (\theta)\right) \cdot \frac{\mathrm{b}+\mu \cdot \mathrm{h}}{\mu \cdot \cos (\theta)}\right)$
Open Calculator
ex $1.2 \mathrm{~m}=2.7 \mathrm{~m}-\left(\left(\frac{0.86885 \mathrm{~m} / \mathrm{s}^{2}}{[\mathrm{~g}]}+\sin \left(10^{\circ}\right)\right) \cdot \frac{2.7 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}{0.48 \cdot \cos \left(10^{\circ}\right)}\right)$
15) Normal Reaction Force at Rear Wheel
$f \mathrm{f} \mathrm{R}_{\mathrm{R}}=\mathrm{W} \cdot(\mathrm{x}+\mu \cdot \mathrm{h}) \cdot \frac{\cos (\theta)}{\mathrm{b}+\mu \cdot \mathrm{h}}$

ex

$$
5699.999 \mathrm{~N}=13000 \mathrm{~N} \cdot(1.2 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}) \cdot \frac{\cos \left(10^{\circ}\right)}{2.7 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}
$$

16) Slope of Road on Rear Wheel
$f \mathrm{fx} \theta=a \cos \left(\frac{\mathrm{R}_{\mathrm{R}}}{\mathrm{W} \cdot \frac{\mathrm{x}+\mu \cdot \mathrm{h}}{\mathrm{b}+\mu \cdot \mathrm{h}}}\right)$
ex $9.999966^{\circ}=a \cos \left(\frac{5700 \mathrm{~N}}{13000 \mathrm{~N} \cdot \frac{1.2 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}{2.7 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}}\right)$
17) Weight of Vehicle on Rear Wheel

$$
f \times W=\frac{R_{R}}{}
$$

ex
$13000 \mathrm{~N}=\frac{5700 \mathrm{~N}}{(1.2 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}) \cdot \frac{\cos \left(10^{\circ}\right)}{2.7 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}}}$
18) Wheel Base of Vehicle using Retardation on Rear Wheel
$\mathbf{f x} \mathrm{b}=\frac{\left(\frac{\mathrm{a}}{[\mathrm{g}]}+\sin (\theta)\right) \cdot \mu \cdot \mathrm{h}+\mu \cdot \mathbf{x} \cdot \cos (\theta)}{\mu \cdot \cos (\theta)-\left(\frac{\mathrm{a}}{[\mathrm{g}]}+\sin (\theta)\right)}$

ex

$2.7 \mathrm{~m}=\frac{\left(\frac{0.86885 \mathrm{~m} / \mathrm{s}^{2}}{[\mathrm{~g}]}+\sin \left(10^{\circ}\right)\right) \cdot 0.48 \cdot 0.007919 \mathrm{~m}+0.48 \cdot 1.2 \mathrm{~m} \cdot \cos \left(10^{\circ}\right)}{0.48 \cdot \cos \left(10^{\circ}\right)-\left(\frac{0.86885 \mathrm{~m} / \mathrm{s}^{2}}{[\mathrm{~g}]}+\sin \left(10^{\circ}\right)\right)}$
19) Wheel Base on Rear Wheel
$f \mathrm{x} b=\left(\mathrm{W} \cdot(\mathrm{x}+\mu \cdot \mathrm{h}) \cdot \frac{\cos (\theta)}{\mathrm{R}_{\mathrm{R}}}\right)-\mu \cdot \mathrm{h}$

ex

$2.7 \mathrm{~m}=\left(13000 \mathrm{~N} \cdot(1.2 \mathrm{~m}+0.48 \cdot 0.007919 \mathrm{~m}) \cdot \frac{\cos \left(10^{\circ}\right)}{5700 \mathrm{~N}}\right)-0.48 \cdot 0.007919 \mathrm{~m}$

Variables Used

- a Braking Retardation BRW (Meter per Square Second)
- b Vehicle Wheelbase BRW (Meter)
- \mathbf{h} Height of C.G. of Vehicle BRW (Meter)
- $\mathbf{R}_{\mathbf{F}}$ Normal Reaction at Front Wheel BRW (Newton)
- $\mathbf{R}_{\mathbf{R}}$ Normal Reaction at Rear Wheel BRW (Newton)
- W Vehicle Weight BRW (Newton)
- X Horizontal Distance of C.G. from Rear Axle BRW (Meter)
- $\boldsymbol{\theta}$ Road Inclination Angle BRW (Degree)
- $\boldsymbol{\mu}$ Friction Coefficient between Wheels and Ground BRW

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second ${ }^{2}$

Gravitational acceleration on Earth

- Function: acos, acos(Number)

Inverse trigonometric cosine function

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: $\boldsymbol{\operatorname { s i n }}, \sin ($ Angle)

Trigonometric sine function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Acceleration in Meter per Square Second ($\mathrm{m} / \mathrm{s}^{2}$)

Acceleration Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

Check other formula lists

- Brakes Applied on All Wheels for Racing Car Formulas
- Front Wheel Braking for Racing Cars Formulas
- Rear Wheel Braking for Racing Car Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

