



# Design of Knuckle Joint Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...





# List of 45 Design of Knuckle Joint Formulas

# Design of Knuckle Joint &

### Diameter of Pin of Knuckle joint 🗗

1) Diameter of Knuckle Pin given Bending Moment in Pin



Open Calculator 🗗

ex 
$$38.23545 \mathrm{mm} = \left( \frac{32 \cdot 450000 \mathrm{N^*mm}}{\pi \cdot 82 \mathrm{N/mm^2}} \right)^{\frac{1}{3}}$$

2) Diameter of Knuckle Pin given Bending Stress in Pin 🖒





# 3) Diameter of Pin of Knuckle Joint given Compressive Stress in Eye End Portion of Pin



Open Calculator

$$ext{ex} egin{array}{c} 41.66667 ext{mm} = rac{50000 ext{N}}{30 ext{N}/ ext{mm}^2 \cdot 40 ext{mm}} \end{array}$$

4) Diameter of Pin of Knuckle Joint given Compressive Stress in Fork End Portion of Pin



Open Calculator

$$=$$
  $\frac{50000 ext{N}}{2 \cdot 30 ext{N/mm}^2 \cdot 26 ext{mm}}$ 

5) Diameter of Pin of Knuckle Joint given Diameter of Pinhead

$$\mathbf{fx} d = \frac{d_1}{1.5}$$

$$40 \text{mm} = \frac{60 \text{mm}}{1.5}$$



- 6) Diameter of Pin of Knuckle Joint given Load and Shear Stress in Pin 🛂
- $\left| \mathbf{f} \mathbf{x} 
  ight| \mathrm{d} = \sqrt{rac{2 \cdot \mathrm{L}}{\pi \cdot au_\mathrm{pin}}} \, \left| \mathbf{f} \mathbf{x} 
  ight|$

Open Calculator

ex  $37.04086 \mathrm{mm} = \sqrt{rac{2 \cdot 50000 \mathrm{N}}{\pi \cdot 23.2 \mathrm{N/mm^2}}}$ 

7) Diameter of Pin of Knuckle Joint given Outer Diameter of Eye



Open Calculator

- $40 \text{mm} = \frac{80 \text{mm}}{2}$
- 8) Diameter of Pin of Knuckle Joint given Shear Stress in Eye



Open Calculator

 $\mathbf{ex} \left[ 27.91667 \mathrm{mm} = 80 \mathrm{mm} - rac{50000 \mathrm{N}}{40 \mathrm{mm} \cdot 24 \mathrm{N/mm^2}} 
ight]$ 



#### 9) Diameter of Pin of Knuckle Joint given Shear Stress in Fork

Open Calculator 🗗

ex  $41.53846 \mathrm{mm} = 80 \mathrm{mm} - \frac{50000 \mathrm{N}}{2 \cdot 25 \mathrm{N/mm^2 \cdot 26 mm}}$ 

#### 10) Diameter of Pin of Knuckle Joint given Tensile Stress in Eve



Open Calculator

 $\mathbf{ex} = 52.2222 \mathrm{mm} = 80 \mathrm{mm} - \frac{50000 \mathrm{N}}{40 \mathrm{mm} \cdot 45 \mathrm{N/mm^2}}$ 

### 11) Diameter of Pin of Knuckle Joint given Tensile Stress in Fork



Open Calculator

#### 12) Diameter of Pinhead of Knuckle Joint given Diameter of Pin



Open Calculator 🗗

 $\texttt{ex} 55.5 \text{mm} = 1.5 \cdot 37 \text{mm}$ 



#### 13) Length of Pin of Knuckle Joint in Contact with Eye End



Open Calculator 🖸

$$ext{ex} \ 45.04505 ext{mm} = rac{50000 ext{N}}{30 ext{N}/ ext{mm}^2 \cdot 37 ext{mm}}$$

#### Diameter of Rod of Knuckle Joint &

# 14) Diameter of Rod of Knuckle Joint given its Enlarged Diameter near Joint



Open Calculator

$$=$$
  $35.45455$ mm  $=$   $\frac{39$ mm}{1.1}

#### 15) Diameter of Rod of Knuckle Joint given Tensile Stress in Rod



$$ext{ex} \ 35.68248 ext{mm} = \sqrt{rac{4 \cdot 50000 ext{N}}{\pi \cdot 50 ext{N/mm}^2}}$$



#### 16) Enlarged Diameter of Rod of Knuckle Joint near Joint

fx  $D_1 = 1.1 \cdot d_{rk}$ 

Open Calculator 🗗

 $\texttt{ex} \ 34.1 \text{mm} = 1.1 \cdot 31 \text{mm}$ 

#### 17) Rod Diameter of Knuckle Joint given Thickness of Eye

 $extbf{d}_{ ext{rk}} = rac{ ext{b}}{1.25}$ 

Open Calculator

#### 18) Rod Diameter of Knuckle Joint given Thickness of Fork Eye

fx  $d_{
m rk} = rac{
m a}{0.75}$ 

Open Calculator 🗗

 $= \frac{34.66667 \text{mm}}{0.75}$ 

### Outer Diameter of Eye of Knuckle Joint &

19) Outer Diameter of Eye of Knuckle Joint given Diameter of Pin

fx  $d_{
m o} = 2 \cdot d$ 

Open Calculator

 $\texttt{ex} \ 74 \text{mm} = 2 \cdot 37 \text{mm}$ 



#### 20) Outer Diameter of Eye of Knuckle Joint given Shear Stress in Eye



Open Calculator 🗗

$$89.08333 ext{mm} = 37 ext{mm} + rac{50000 ext{N}}{40 ext{mm} \cdot 24 ext{N/mm}^2}$$

### 21) Outer Diameter of Eye of Knuckle Joint given Shear Stress in Fork



Open Calculator

$$ext{ex} egin{aligned} 75.46154 ext{mm} &= rac{50000 ext{N}}{2 \cdot 25 ext{N/mm}^2 \cdot 26 ext{mm}} + 37 ext{mm} \end{aligned}$$

#### 22) Outer Diameter of Eye of Knuckle Joint given Tensile Stress in Eye

$$\mathrm{d}_\mathrm{o} = \mathrm{d} + rac{\mathrm{L}}{\mathrm{b} \cdot (\sigma_\mathrm{t} \mathrm{eye})}$$

Open Calculator

# $\mathbf{ex} = 64.77778 \mathrm{mm} = 37 \mathrm{mm} + rac{50000 \mathrm{N}}{40 \mathrm{mm} \cdot 45 \mathrm{N/mm^2}}$

### 23) Outer Diameter of Eye of Knuckle Joint given Tensile Stress in Fork

$$\mathbf{f} \mathbf{k} d_{\mathrm{o}} = rac{\mathrm{L}}{2 \cdot (\sigma_{\mathrm{t}} \mathrm{fork}) \cdot \mathrm{a}} + \mathrm{d}$$







#### Stresses in Knuckle joint 🗗

24) Bending Stress in Knuckle Pin given Bending Moment in Pin 🗗

fx 
$$\sigma_{
m b} = rac{32 \cdot {
m M_b}}{\pi \cdot {
m d}^3}$$

Open Calculator

$$ext{ex} egin{aligned} 90.49143 ext{N/mm}^2 &= rac{32 \cdot 450000 ext{N*mm}}{\pi \cdot (37 ext{mm})^3} \end{aligned}$$

25) Bending Stress in Knuckle Pin given Load, Thickness of Eyes and Pin Diameter

$$\sigma_{
m b} = rac{32 \cdot rac{
m L}{2} \cdot \left(rac{
m b}{4} + rac{
m a}{3}
ight)}{\pi \cdot {
m d}^3}$$

Open Calculator

$$ext{ex} \left[ 93.84296 ext{N/mm}^2 = rac{32 \cdot rac{50000 ext{N}}{2} \cdot \left( rac{40 ext{mm}}{4} + rac{26 ext{mm}}{3} 
ight)}{\pi \cdot \left( 37 ext{mm} 
ight)^3} 
ight]$$

26) Compressive Stress in Pin Inside Eye of Knuckle Joint given Load and Pin Dimensions

$$\sigma_{
m c} = rac{
m L}{
m b \cdot d}$$

$$ext{ex} = rac{50000 ext{N}}{40 ext{mm} \cdot 37 ext{mm}}$$



# 27) Compressive Stress in Pin Inside Fork of Knuckle Joint given Load and Pin Dimensions

 $\left[\sigma_{
m c} = rac{
m L}{2 \cdot {
m a} \cdot {
m d}}
ight]$ 

Open Calculator

$$extbf{ex} 25.98753 ext{N/mm}^2 = rac{50000 ext{N}}{2 \cdot 26 ext{mm} \cdot 37 ext{mm}}$$

# 28) Max Bending Moment in Knuckle Pin given Load, Thickness of Eye and Fork

 $M_{
m b} = rac{
m L}{2} \cdot \left(rac{
m b}{4} + rac{
m a}{3}
ight)^2$ 

Open Calculator

# 29) Shear Stress in Eye of Knuckle Joint given Load, Outer Diameter of Eye and its Thickness



$$ext{ex} 29.06977 ext{N/mm}^2 = rac{50000 ext{N}}{40 ext{mm} \cdot (80 ext{mm} - 37 ext{mm})}$$



# 30) Shear Stress in Fork of Knuckle Joint given Load, Outer Diameter of Eye and Pin Diameter

 $au_{
m fork} = rac{
m L}{2 \cdot {
m a} \cdot ({
m d_o} - {
m d})}$ 

Open Calculator 🗗

 $ext{ex} \ 22.36136 ext{N/mm}^2 = rac{50000 ext{N}}{2 \cdot 26 ext{mm} \cdot (80 ext{mm} - 37 ext{mm})}$ 

### 31) Shear Stress in Pin of Knuckle Joint given Load and Pin Diameter



Open Calculator

 $ext{ex} \ 23.25127 ext{N/mm}^2 = rac{2 \cdot 50000 ext{N}}{\pi \cdot (37 ext{mm})^2}$ 

# 32) Tensile Stress in Eye of Knuckle Joint given Load, Outer Diameter of Eve and its Thickness



Open Calculator 🖸

 $ext{ex} \ 29.06977 ext{N/mm}^2 = rac{50000 ext{N}}{40 ext{mm} \cdot (80 ext{mm} - 37 ext{mm})}$ 

# 33) Tensile Stress in Fork of Knuckle Joint given Load, Outer Diameter of Eye and Pin Diameter

 $oldsymbol{\kappa} \left( \sigma_{
m t} {
m fork} 
ight) = \overline{rac{
m L}{2 \cdot {
m a} \cdot ({
m d}_{
m o} - {
m d})}}$ 

Open Calculator 🗗

 $ext{ex} 22.36136 ext{N/mm}^2 = rac{50000 ext{N}}{2 \cdot 26 ext{mm} \cdot (80 ext{mm} - 37 ext{mm})}$ 

#### 34) Tensile Stress in Rod of Knuckle Joint



Open Calculator

 $extbf{ex} \left[ 66.24555 ext{N/mm}^2 = rac{4 \cdot 50000 ext{N}}{\pi \cdot \left( 31 ext{mm} 
ight)^2} 
ight]$ 

## Thickness of Eye End of Knuckle Joint &

35) Thickness of Eye End of Knuckle Joint given Bending Moment in Pin



Open Calculator



#### 36) Thickness of Eye End of Knuckle Joint given Bending Stress in Pin

 $\mathbf{b} = 4 \cdot \left( rac{\pi \cdot \mathrm{d}^3 \cdot \sigma_\mathrm{b}}{16 \cdot \mathrm{L}} - rac{\mathrm{a}}{3} 
ight)$ 

Open Calculator 🚰

 $oxed{ex} 30.57708 \mathrm{mm} = 4 \cdot \left( rac{\pi \cdot \left( 37 \mathrm{mm} 
ight)^3 \cdot 82 \mathrm{N/mm^2}}{16 \cdot 50000 \mathrm{N}} - rac{26 \mathrm{mm}}{3} 
ight)$ 

# 37) Thickness of Eye End of Knuckle Joint given Shear Stress in Eye

 $b = rac{L}{ au_{
m eye} \cdot (d_{
m o} - d)}$  Open Calculator  $oldsymbol{C}$ 

 $ext{ex} = rac{50000 ext{N}}{24 ext{N/mm}^2 \cdot (80 ext{mm} - 37 ext{mm})}$ 

 $b = \frac{L}{(\sigma_{t} \text{eve}) \cdot (d_{0} - d)}$ 

Open Calculator

=  $25.83979 \mathrm{mm} = rac{50000 \mathrm{N}}{45 \mathrm{N/mm^2 \cdot (80 \mathrm{mm} - 37 \mathrm{mm})}}$ 

### 39) Thickness of Eye of Knuckle Joint given Rod Diameter

fx  $b=1.25\cdot d_{
m rk}$ 

Open Calculator

 $\textbf{ex} \ 38.75 \text{mm} = 1.25 \cdot 31 \text{mm}$ 







### Thickness of Fork Eye of Knuckle Joint &

40) Thickness of Fork Eye of Knuckle Joint given Bending Moment in Pin

$$\mathbf{f}\mathbf{x} = 3 \cdot \left(2 \cdot rac{\mathrm{M_b}}{\mathrm{L}} - rac{\mathrm{b}}{4}
ight)$$

Open Calculator 🗗

$$\mathbf{ex} \left[ 24 \mathrm{mm} = 3 \cdot \left( 2 \cdot \frac{450000 \mathrm{N*mm}}{50000 \mathrm{N}} - \frac{40 \mathrm{mm}}{4} \right) \right]$$

41) Thickness of Fork Eye of Knuckle Joint given Bending Stress in Pin

$$\mathbf{fx} = 3 \cdot \left( rac{\pi \cdot \mathrm{d}^3 \cdot \sigma_\mathrm{b}}{16 \cdot \mathrm{L}} - rac{\mathrm{b}}{4} 
ight)$$

Open Calculator 🗗

ex 
$$18.93281 \mathrm{mm} = 3 \cdot \left( \frac{\pi \cdot (37 \mathrm{mm})^3 \cdot 82 \mathrm{N/mm^2}}{16 \cdot 50000 \mathrm{N}} - \frac{40 \mathrm{mm}}{4} \right)$$

42) Thickness of Fork Eye of Knuckle Joint given Compressive Stress in Pin Inside Fork End

$$\left[\mathbf{a} = rac{\mathrm{L}}{2 \cdot \mathbf{\sigma_{\mathrm{c}} \cdot \mathrm{d}}}
ight]$$

$$\mathbf{ex} = \frac{50000 \mathrm{N}}{2 \cdot 30 \mathrm{N/mm^2 \cdot 37 mm}}$$





#### 43) Thickness of Fork Eye of Knuckle Joint given Rod Diameter

fx  $a=0.75\cdot d_{
m rk}$ 

- $23.25 \text{mm} = 0.75 \cdot 31 \text{mm}$
- 44) Thickness of Fork Eye of Knuckle Joint given Shear Stress in Fork
- $\left| \mathbf{a} = rac{L}{2 \cdot au_{\mathrm{fork}} \cdot (d_{\mathrm{o}} d)} 
  ight|$

- Open Calculator
- $ext{ex} \ 23.25581 ext{mm} = rac{50000 ext{N}}{2 \cdot 25 ext{N} / ext{mm}^2 \cdot (80 ext{mm} 37 ext{mm})}$
- 45) Thickness of Fork Eye of Knuckle Joint given Tensile Stress in Fork
- fx  $a = rac{L}{2 \cdot (\sigma_{t} \mathrm{fork}) \cdot (\mathrm{d}_{0} \mathrm{d})}$

- Open Calculator 🚰
- $ext{ex} \ 21.93945 ext{mm} = rac{50000 ext{N}}{2 \cdot 26.5 ext{N/mm}^2 \cdot (80 ext{mm} 37 ext{mm})}$



#### Variables Used

- a Thickess of Fork Eye of Knuckle Joint (Millimeter)
- **b** Thickess of Eye of Knuckle Joint (Millimeter)
- **d** Diameter of Knuckle Pin (Millimeter)
- d<sub>1</sub> Diameter of Knuckle Pin Head (Millimeter)
- **D<sub>1</sub>** Enlarged Diameter of Knuckle Joint Rod (Millimeter)
- do Outer Diameter of Eye of Knuckle Joint (Millimeter)
- d<sub>rk</sub> Diameter of Rod of Knuckle Joint (Millimeter)
- I Length of Knuckle Pin in Eye End (Millimeter)
- L Load on Knuckle Joint (Newton)
- M<sub>b</sub> Bending Moment in Knuckle Pin (Newton Millimeter)
- σ<sub>b</sub> Bending Stress in Knuckle Pin (Newton per Square Millimeter)
- σ<sub>c</sub> Compressive Stress in Knuckle Pin (Newton per Square Millimeter)
- σ<sub>t</sub>eye Tensile Stress in Eye of Knuckle Joint (Newton per Square Millimeter)
- σ<sub>t</sub>fork Tensile Stress in Fork of Knuckle Joint (Newton per Square Millimeter)
- σ<sub>t</sub>rod Tensile Stress in Knuckle Joint Rod (Newton per Square Millimeter)
- Teye Shear Stress in Eye of Knuckle Joint (Newton per Square Millimeter)
- Tfork Shear Stress in Fork of Knuckle Joint (Newton per Square Millimeter)
- Tpin Shear Stress in Knuckle Pin (Newton per Square Millimeter)





#### Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
   Archimedes' constant
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Length in Millimeter (mm)

  Length Unit Conversion
- Measurement: Force in Newton (N)
  Force Unit Conversion
- Measurement: Torque in Newton Millimeter (N\*mm)
   Torque Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)
   Stress Unit Conversion





#### Check other formula lists

- Design against Fluctuating Load Design of Helical Gears Formulas [7
- Design of Bevel Gear Formulas [7
- Design of Chain Drives Formulas
- Design of Cotter Joint Formulas 🔀
- Design of Coupling Formulas
- Design of Flywheel Formulas
- **Design of Friction Clutches** Formulas

- Formulas (
- Design of Keys Formulas
- Design of Knuckle Joint Formulas [4
- Design of Lever Formulas
- Design of Pressure Vessels Formulas C
- Design of Shafts Formulas
- Design of Threaded Fasteners Formulas 🔽
- Power Screws Formulas
- Threaded Joints Formulas

Feel free to SHARE this document with your friends!

#### PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/19/2023 | 3:15:58 AM UTC

Please leave your feedback here...



