
calculatoratoz.com

()

unitsconverters.com

Joint Geometry and Dimensions Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Joint Geometry and Dimensions Formulas

Joint Geometry and Dimensions ©

1) Cross Section Area of Socket End Resisting Shear Failure
$\mathrm{fx} \mathrm{A}=\left(\mathrm{d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{c}$
Open Calculator
ex $880 \mathrm{~mm}^{2}=(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 22 \mathrm{~mm}$
2) Cross Section Area of Socket of Cotter Joint Prone to Failure
$\mathrm{fx} \mathrm{A}=\frac{\pi}{4} \cdot\left(\mathrm{~d}_{1}^{2}-\mathrm{d}_{2}^{2}\right)-\mathrm{t}_{\mathrm{c}} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)$
Open Calculator
ex $837.584 \mathrm{~mm}^{2}=\frac{\pi}{4} \cdot\left((54 \mathrm{~mm})^{2}-(40 \mathrm{~mm})^{2}\right)-14 \mathrm{~mm} \cdot(54 \mathrm{~mm}-40 \mathrm{~mm})$
3) Cross Section Area of Spigot of Cotter Joint Prone to Failure
$f \times A_{s}=\frac{\pi \cdot d_{2}^{2}}{4}-d_{2} \cdot t_{c}$
Open Calculator
ex $696.6371 \mathrm{~mm}^{2}=\frac{\pi \cdot(40 \mathrm{~mm})^{2}}{4}-40 \mathrm{~mm} \cdot 14 \mathrm{~mm}$
4) Diameter of Rod of Cotter Joint given Socket Collar Diameter
$\mathrm{f} \mathrm{x}=\frac{\mathrm{d}_{4}}{2.4}$
ex $33.33333 \mathrm{~mm}=\frac{80 \mathrm{~mm}}{2.4}$
5) Diameter of Rod of Cotter Joint given Spigot Collar Diameter
$f \mathrm{x} d=\frac{\mathrm{d}_{3}}{1.5}$
ex $32 \mathrm{~mm}=\frac{48 \mathrm{~mm}}{1.5}$
6) Diameter of Rod of Cotter Joint given Thickness of Cotter
$f \mathrm{x} d=\frac{\mathrm{t}_{\mathrm{c}}}{0.31}$
Open Calculator 〔
ex $45.16129 \mathrm{~mm}=\frac{14 \mathrm{~mm}}{0.31}$
7) Diameter of Rod of Cotter Joint given Thickness of Spigot Collar \longleftarrow
$\mathrm{fx} d=\frac{\mathrm{t}_{1}}{0.45}$
ex $28.88889 \mathrm{~mm}=\frac{13 \mathrm{~mm}}{0.45}$
8) Diameter of Socket Collar given Rod Diameter
$f \mathrm{fx} \mathrm{d}_{4}=2.4 \cdot \mathrm{~d}$
ex $74.4 \mathrm{~mm}=2.4 \cdot 31 \mathrm{~mm}$
9) Diameter of Socket Collar of Cotter Joint given Bending Stress in Cotter

$109.0915 \mathrm{~mm}=\frac{4 \cdot(48.5 \mathrm{~mm})^{2} \cdot 98 \mathrm{~N} / \mathrm{mm}^{2} \cdot \frac{14 \mathrm{~mm}}{50000 \mathrm{~N}}-40 \mathrm{~mm}}{2}$
10) Diameter of Socket Collar of Cotter Joint given Compressive Stress

$$
\mathrm{fx} \mathrm{~d}_{4}=\mathrm{d}_{2}+\frac{\mathrm{L}}{\mathrm{t}_{\mathrm{c}} \cdot \sigma_{\mathrm{c} 1}}
$$

ex
$68.80184 \mathrm{~mm}=40 \mathrm{~mm}+\frac{50000 \mathrm{~N}}{14 \mathrm{~mm} \cdot 124 \mathrm{~N} / \mathrm{mm}^{2}}$
11) Diameter of socket collar of cotter joint given shear stress in socket
$\mathrm{fx} \mathrm{d}_{4}=\frac{\mathrm{L}}{2 \cdot \mathrm{c} \cdot \tau_{\mathrm{so}}}+\mathrm{d}_{2}$

$$
\text { ex } 85.45455 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{2 \cdot 22 \mathrm{~mm} \cdot 25 \mathrm{~N} / \mathrm{mm}^{2}}+40 \mathrm{~mm}
$$

12) Diameter of Spigot Collar given Rod Diameter

$f \mathrm{f} \mathrm{d}_{3}=1.5 \cdot \mathrm{~d}$
ex $46.5 \mathrm{~mm}=1.5 \cdot 31 \mathrm{~mm}$
13) Diameter of Spigot of Cotter Joint given Bending Stress in Cotter
$f \mathrm{x} \mathrm{d}_{2}=4 \cdot \mathrm{~b}^{2} \cdot \sigma_{\mathrm{b}} \cdot \frac{\mathrm{t}_{\mathrm{c}}}{\mathrm{L}}-2 \cdot \mathrm{~d}_{4}$
Open Calculator
ex $98.18296 \mathrm{~mm}=4 \cdot(48.5 \mathrm{~mm})^{2} \cdot 98 \mathrm{~N} / \mathrm{mm}^{2} \cdot \frac{14 \mathrm{~mm}}{50000 \mathrm{~N}}-2 \cdot 80 \mathrm{~mm}$
14) Diameter of Spigot of Cotter Joint given Compressive Stress
$f \mathrm{x} \mathrm{d}_{2}=\mathrm{d}_{4}-\frac{L}{\mathrm{t}_{\mathrm{c}} \cdot \sigma_{\mathrm{c} 1}}$

$$
\text { ex } 51.19816 \mathrm{~mm}=80 \mathrm{~mm}-\frac{50000 \mathrm{~N}}{14 \mathrm{~mm} \cdot 124 \mathrm{~N} / \mathrm{mm}^{2}}
$$

15) Diameter of Spigot of Cotter Joint given Shear Stress in Spigot $\boxed{\boxed{ }}$
$\mathrm{fx} \mathrm{d}_{2}=\frac{\mathrm{L}}{2 \cdot \mathrm{a} \cdot \tau_{\mathrm{sp}}}$
ex $40.91653 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{2 \cdot 23.5 \mathrm{~mm} \cdot 26 \mathrm{~N} / \mathrm{mm}^{2}}$
16) Inside Diameter of Socket of Cotter Joint given Shear Stress in Socket
$\mathrm{fx} \mathrm{d}_{2}=\mathrm{d}_{4}-\frac{\mathrm{L}}{2 \cdot \mathrm{c} \cdot \tau_{\mathrm{so}}}$
Open Calculator
ex $34.54545 \mathrm{~mm}=80 \mathrm{~mm}-\frac{50000 \mathrm{~N}}{2 \cdot 22 \mathrm{~mm} \cdot 25 \mathrm{~N} / \mathrm{mm}^{2}}$
17) Minimum Diameter of Spigot in Cotter Joint Subjected to Crushing Stress
$f \mathrm{x} \mathrm{d}_{2}=\frac{\mathrm{L}}{\sigma_{\mathrm{c}} \cdot \mathrm{t}_{\mathrm{c}}}$
Open Calculatore
ex $28.34467 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{126 \mathrm{~N} / \mathrm{mm}^{2} \cdot 14 \mathrm{~mm}}$
18) Minimum Rod Diameter in Cotter Joint given Axial Tensile Force and Stress

E
$f \mathrm{fx}=\sqrt{\frac{4 \cdot \mathrm{~L}}{\sigma \mathrm{t}_{\text {rod }} \cdot \pi}}$
Open Calculator
ex $35.68248 \mathrm{~mm}=\sqrt{\frac{4 \cdot 50000 \mathrm{~N}}{50 \mathrm{~N} / \mathrm{mm}^{2} \cdot \pi}}$
19) Thickness of Cotter given Compressive Stress in Socket
$f \mathrm{x} \mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{\left(\mathrm{d}_{4}-\mathrm{d}_{2}\right) \cdot \sigma_{\mathrm{cso}}}$
20) Thickness of Cotter given Compressive Stress in Spigot
$\mathrm{fx} \mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{\sigma_{\mathrm{c} 1} \cdot \mathrm{~d}_{2}}$
ex $10.08065 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{124 \mathrm{~N} / \mathrm{mm}^{2} \cdot 40 \mathrm{~mm}}$
21) Thickness of Cotter given Shear Stress in Cotter
$f \mathrm{x} \mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{2 \cdot \tau_{\mathrm{co}} \cdot \mathrm{b}}$
$\operatorname{ex} 21.47766 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{2 \cdot 24 \mathrm{~N} / \mathrm{mm}^{2} \cdot 48.5 \mathrm{~mm}}$
22) Thickness of Cotter given Tensile Stress in Socket
$\mathrm{f} \times \mathrm{t}_{\mathrm{c}}=\frac{\left(\frac{\pi}{4} \cdot\left(\mathrm{~d}_{1}^{2}-\mathrm{d}_{2}^{2}\right)\right)-\frac{\mathrm{L}_{\mathrm{cot}}}{\sigma_{\mathrm{t}} \mathrm{so}}}{\mathrm{d}_{1}-\mathrm{d}_{2}}$
Open Calculator [
$65.48297 \mathrm{~mm}=\frac{\left(\frac{\pi}{4} \cdot\left((54 \mathrm{~mm})^{2}-(40 \mathrm{~mm})^{2}\right)\right)-\frac{5000 \mathrm{~N}}{42.8 \mathrm{~N} / \mathrm{mm}^{2}}}{54 \mathrm{~mm}-40 \mathrm{~mm}}$
23) Thickness of Cotter Joint
$\mathrm{fx}_{\mathrm{x}} \mathrm{t}_{\mathrm{c}}=0.31 \cdot \mathrm{~d}$
ex $9.61 \mathrm{~mm}=0.31 \cdot 31 \mathrm{~mm}$
24) Thickness of Cotter Joint given Bending Stress in Cotter
$f_{\mathrm{x}} \mathrm{t}_{\mathrm{c}}=\left(2 \cdot \mathrm{~d}_{4}+\mathrm{d}_{2}\right) \cdot\left(\frac{\mathrm{L}}{4 \cdot \mathrm{~b}^{2} \cdot \sigma_{\mathrm{b}}}\right)$
Open Calculator
ex $10.84502 \mathrm{~mm}=(2 \cdot 80 \mathrm{~mm}+40 \mathrm{~mm}) \cdot\left(\frac{50000 \mathrm{~N}}{4 \cdot(48.5 \mathrm{~mm})^{2} \cdot 98 \mathrm{~N} / \mathrm{mm}^{2}}\right)$
25) Thickness of Spigot Collar when Rod Diameter is Available
$f \mathrm{x} \mathrm{t}_{1}=0.45 \cdot \mathrm{~d}$
Open Calculator
ex $13.95 \mathrm{~mm}=0.45 \cdot 31 \mathrm{~mm}$
26) Width of Cotter by Bending Consideration
$\mathrm{fx}_{\mathrm{x}} \mathrm{b}=\left(3 \cdot \frac{\mathrm{~L}}{\mathrm{t}_{\mathrm{c}} \cdot \sigma_{\mathrm{b}}} \cdot\left(\frac{\mathrm{d}_{2}}{4}+\frac{\mathrm{d}_{4}-\mathrm{d}_{2}}{6}\right)\right)^{0.5}$
ex
$42.68674 \mathrm{~mm}=\left(3 \cdot \frac{50000 \mathrm{~N}}{14 \mathrm{~mm} \cdot 98 \mathrm{~N} / \mathrm{mm}^{2}} \cdot\left(\frac{40 \mathrm{~mm}}{4}+\frac{80 \mathrm{~mm}-40 \mathrm{~mm}}{6}\right)\right)^{0.5}$
27) Width of Cotter by Shear Consideration

Variables Used

- a Gap between End of Slot to End of Spigot (Millimeter)
- A Cross Sectional Area of Socket (Square Millimeter)
- $\mathbf{A}_{\mathbf{s}}$ Cross Sectional Area of Spigot (Square Millimeter)
- b Mean Width of Cotter (Millimeter)
- C Axial Distance From Slot to End of Socket Collar (Millimeter)
- d Diameter of Rod of Cotter Joint (Millimeter)
- \mathbf{d}_{1} Outside Diameter of Socket (Millimeter)
- \mathbf{d}_{2} Diameter of Spigot (Millimeter)
- \mathbf{d}_{3} Diameter of Spigot Collar (Millimeter)
- \mathbf{d}_{4} Diameter of Socket Collar (Millimeter)
- L Load on Cotter Joint (Newton)
- $\mathbf{L}_{\text {cot }}$ Load at Cotter Joint (Newton)
- $\mathbf{t}_{\mathbf{1}}$ Thickness of Spigot Collar (Millimeter)
- $\mathbf{t}_{\mathbf{c}}$ Thickness of Cotter (Millimeter)
- V Shear Force on Cotter (Newton)
- $\sigma_{\mathbf{b}}$ Bending Stress in Cotter (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{c}}$ Crushing Stress induced in Cotter (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{c} 1}$ Compressive Stress in Spigot (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{c s o}}$ Compressive Stress In Socket (Newton per Square Millimeter)
- $\sigma_{\mathbf{t}} \mathbf{S O}$ Tensile Stress In Socket (Newton per Square Millimeter)
- $\boldsymbol{\sigma} \mathbf{t}_{\text {rod }}$ Tensile Stress in Cotter Joint Rod (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{c o}}$ Shear Stress in Cotter (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{s o}}$ Shear Stress in Socket (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{s p}}$ Shear Stress in Spigot (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Millimeter (mm²)

Area Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion $\sqrt{ }$

- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Forces and Loads on Joint Formulas
- Joint Geometry and Dimensions Formulas $\sqrt{\boxed{3}}$
- Strength and Stress Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

