

Frequency of Under Damped Forced Vibrations Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Frequency of Under Damped Forced Vibrations Formulas

Frequency of Under Damped Forced Vibrations

1) Complementary Function

$$\mathbf{x} \mathbf{x}_1 = \mathbf{A} \cdot \cos(\omega_\mathrm{d} - \phi)$$

Open Calculator 🗗

$$= 2.527173 \text{m} = 5.25 \text{m} \cdot \cos(6 \text{Hz} - 45^{\circ})$$

2) Damping Coefficient

$$\mathbf{k} = \frac{ an(\phi) \cdot \left(k - m \cdot \omega^2\right)}{\omega}$$

Open Calculator

$$\boxed{ \textbf{ex} \ 3.5 \text{Ns/m} = \frac{\tan(45°) \cdot \left(60 \text{N/m} - .25 \text{kg} \cdot \left(10 \text{rad/s}\right)^2\right)}{10 \text{rad/s}} }$$

3) Deflection of System under Static Force

$$\mathbf{x}_{o} = \frac{F_{x}}{k}$$

Open Calculator

$$\boxed{ 0.333333 m = \frac{20N}{60N/m} }$$

4) External Periodic Disturbing Force

$$\mathbf{F} = \mathbf{F}_{\mathrm{x}} \cdot \cos(\omega \cdot \mathbf{t}_{\mathrm{p}})$$

ex
$$16.87708N = 20N \cdot \cos(10 \text{rad/s} \cdot 1.2 \text{s})$$

5) Maximum Displacement of Forced Vibration

$$\mathbf{fx} egin{aligned} \mathbf{f_x} \ \mathbf{d_{mass}} &= \dfrac{\mathbf{F_x}}{\sqrt{\left(\mathbf{c} \cdot \mathbf{\omega}
ight)^2 - \left(\mathbf{k} - \mathbf{m} \cdot \mathbf{\omega}^2
ight)^2}} \end{aligned}$$

Open Calculator

$$0.560112m = \frac{20N}{\sqrt{(5Ns/m \cdot 10rad/s)^2 - (60N/m - .25kg \cdot (10rad/s)^2)^2}}$$

6) Maximum Displacement of Forced Vibration at Resonance

$$\boxed{\mathbf{f}\mathbf{x}} d_{mass} = \mathbf{x}_o \cdot \frac{\mathbf{k}}{\mathbf{c} \cdot \mathbf{\omega}_n}$$

Open Calculator

$$= 0.188571 m = 0.33 m \cdot \frac{60 N/m}{5 Ns/m \cdot 21 rad/s}$$

7) Maximum Displacement of Forced Vibration using Natural Frequency

$$\mathbf{d}_{\mathrm{mass}} = rac{\mathbf{r}_{\mathrm{x}}}{\sqrt{\left(\mathbf{c}\cdotrac{\omega}{\mathrm{k}}
ight)^{2}+\left(1-\left(rac{\omega}{\omega_{\mathrm{n}}}
ight)^{2}
ight)^{2}}}$$

Open Calculator 🖸

ex
$$17.59301 \text{m} = \frac{20 \text{N}}{\sqrt{\left(5 \text{Ns/m} \cdot \frac{10 \text{rad/s}}{60 \text{N/m}}\right)^2 + \left(1 - \left(\frac{10 \text{rad/s}}{21 \text{rad/s}}\right)^2\right)^2}}$$

8) Maximum Displacement of Forced Vibration with Negligible Damping

$$\mathbf{f}_{\mathrm{mass}} = rac{F_{\mathrm{x}}}{m \cdot \left(\omega_{\mathrm{n}}^2 - \omega^2
ight)}$$

9) Particular Integral

$$\mathbf{fx} = \frac{F_x \cdot cos(\omega \cdot t_p - \phi)}{\sqrt{\left(c \cdot \omega\right)^2 - \left(k - m \cdot \omega^2\right)^2}}$$

Open Calculator

$$\underbrace{ 0.121701 m = \frac{20 N \cdot \cos(10 rad/s \cdot 1.2 s - 45°)}{\sqrt{(5 N s/m \cdot 10 rad/s)^2 - \left(60 N/m - .25 kg \cdot (10 rad/s)^2\right)^2} }$$

10) Phase Constant

$$\phi = a an \left(rac{ ext{c} \cdot \omega}{ ext{k} - ext{m} \cdot \omega^2}
ight)$$

Open Calculator 🛂

ex
$$55.00798^{\circ} = a \tan \left(\frac{5 \text{Ns/m} \cdot 10 \text{rad/s}}{60 \text{N/m} - .25 \text{kg} \cdot (10 \text{rad/s})^2} \right)$$

11) Static Force

$$\mathbf{f}_{\mathbf{x}} \mathbf{F}_{\mathbf{x}} = \mathbf{x}_{\mathbf{o}} \cdot \mathbf{k}$$

Open Calculator 🚰

- $\boxed{19.8\mathrm{N} = 0.33\mathrm{m}\cdot60\mathrm{N/m}}$
- 12) Static Force using Maximum Displacement or Amplitude of Forced Vibration

$$\mathbf{F}_{x} = d_{mass} \cdot \left(\sqrt{\left(c \cdot \omega
ight)^{2} - \left(k - m \cdot \omega^{2}
ight)^{2}}
ight)^{2}$$

Open Calculator

$$\boxed{ 28.56571 \mathrm{N} = 0.8 \mathrm{m} \cdot \left(\sqrt{\left(5 \mathrm{Ns/m} \cdot 10 \mathrm{rad/s}\right)^2 - \left(60 \mathrm{N/m} - .25 \mathrm{kg} \cdot \left(10 \mathrm{rad/s}\right)^2\right)^2} \right) }$$

13) Static Force when Damping is Negligible

$$\mathbf{F}_{x}=d_{mass}\cdot\left(m\cdot\omega_{n}^{2}-\omega^{2}\right)$$

14) Total Displacement of Forced Vibration given Particular Integral and Complementary Function 🗗

$$\mathbf{f}\mathbf{x} d_{\mathrm{mass}} = \mathbf{x}_2 + \mathbf{x}_1$$

Open Calculator 🚰

$$ext{ex} 14.9 ext{m} = 12.4 ext{m} + 2.5 ext{m}$$

15) Total Displacement of Forced Vibrations

$$d_{mass} = A \cdot cos(\omega_d - \phi) + \frac{F_x \cdot cos(\omega \cdot t_p - \phi)}{\sqrt{\left(c \cdot \omega\right)^2 - \left(k - m \cdot \omega^2\right)^2}}$$

$$\boxed{2.648875 \text{m} = 5.25 \text{m} \cdot \cos(6 \text{Hz} - 45\degree) + \frac{20 \text{N} \cdot \cos(10 \text{rad/s} \cdot 1.2 \text{s} - 45\degree)}{\sqrt{(5 \text{Ns/m} \cdot 10 \text{rad/s})^2 - \left(60 \text{N/m} - .25 \text{kg} \cdot (10 \text{rad/s})^2\right)^2}}$$

Variables Used

- A Amplitude of Vibration (Meter)
- C Damping Coefficient (Newton Second per Meter)
- d_{mass} Total Displacement (Meter)
- **F** External Periodic Disturbing Force (Newton)
- F_x Static Force (Newton)
- **k** Stiffness of Spring (Newton per Meter)
- **m** Mass suspended from Spring (Kilogram)
- t_p Time Period (Second)
- X₁ Complementary Function (Meter)
- X₂ Particular Integral (Meter)
- Xo Deflection under Static Force (Meter)
- **Φ** Phase Constant (Degree)
- w Angular Velocity (Radian per Second)
- ω_d Circular Damped Frequency (Hertz)
- ω_n Natural Circular Frequency (Radian per Second)

Constants, Functions, Measurements used

- Function: atan, atan(Number)

 Inverse trigonometric tangent function
- Function: cos, cos(Angle)

 Trigonometric cosine function
- Function: sqrt, sqrt(Number) Square root function
- Function: tan, tan(Angle)

 Trigonometric tangent function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Surface Tension in Newton per Meter (N/m)

 Surface Tension Unit Conversion
- Measurement: Angular Velocity in Radian per Second (rad/s)
 Angular Velocity Unit Conversion
- Measurement: Damping Coefficient in Newton Second per Meter (Ns/m)

 Damping Coefficient Unit Conversion

Check other formula lists

- Load for Various Types of Beams and Load Conditions Formulas
- Critical or Whirling Speed of Shaft Formulas Natural Frequency of Free Transverse
- Effect of Inertia of Constraint in Longitudinal and Transverse Vibrations Formulas
- Frequency of Free Damped Vibrations
 Formulas
- Frequency of Under Damped Forced Vibrations
- Magnification Factor or Dynamic Magnifier Formulas
- Natural Frequency of Free Transverse Vibrations Formulas
- Natural Frequency of Free Transverse
 Vibrations Due to Uniformly Distributed Load

- Acting Over a Simply Supported Shaft Formulas
- Natural Frequency of Free Transverse
 Vibrations For a Shaft Subjected to a Number of Point Loads Formulas
- Natural Frequency of Free Transverse
 Vibrations of a Shaft Fixed at Both Ends
 Carrying a Uniformly Distributed Load
 Formulas
- Values of length of beam for the various types of beams and under various load conditions
 Formulas
- Values of static deflection for the various types of beams and under various load conditions
 Formulas
- Vibration Isolation and Transmissibility Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/29/2023 | 6:34:14 PM UTC

Please leave your feedback here...

