
calculatoratoz.com

Madelung Constant Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Madelung Constant Formulas

Madelung Constant

1) Madelung Constant given Repulsive Interaction Constant
$f \mathbf{x}=\frac{\mathrm{B}_{\mathrm{M}} \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot \mathrm{n}_{\text {born }}}{\left(\mathrm{q}^{2}\right) \cdot\left([\text { Charge-e }]^{2}\right) \cdot\left(\mathrm{r}_{0}^{\mathrm{n}_{\text {born }}-1}\right)}$
Open Calculator
ex $1.702967=\frac{4.1 \mathrm{E}^{\wedge}-29 \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot 0.9926}{\left((0.3 \mathrm{C})^{2}\right) \cdot\left([\text { Charge-e }]^{2}\right) \cdot\left((60 \mathrm{~A})^{0.9926-1}\right)}$
2) Madelung Constant using Born Lande Equation

$$
\mathrm{M}=\frac{-\mathrm{U} \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot \mathrm{r}_{0}}{\left(1-\left(\frac{1}{\mathrm{n}_{\mathrm{born}}}\right)\right) \cdot\left([\text { Charge-e }]^{2}\right) \cdot[\text { Avaga-no }] \cdot \mathrm{z}^{+} \cdot \mathrm{z}^{-}}
$$

$$
\text { ex } 1.688737=\frac{-3500 \mathrm{~J} / \mathrm{mol} \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot 60 \mathrm{~A}}{\left(1-\left(\frac{1}{0.9926}\right)\right) \cdot\left([\text { Charge-e }]^{2}\right) \cdot[\text { Avaga-no }] \cdot 4 \mathrm{C} \cdot 3 \mathrm{C}}
$$

3) Madelung Constant using Born-Mayer equation
fx

Open Calculator ©

$\mathrm{M}=\frac{-\mathrm{U} \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot \mathrm{r}_{0}}{[\text { Avaga-no }] \cdot \mathrm{z}^{+} \cdot \mathrm{z}^{-} \cdot\left([\text { Charge-e }]^{2}\right) \cdot\left(1-\left(\frac{\rho}{\mathrm{r}_{0}}\right)\right)}$
ex $1.716794=\frac{-3500 \mathrm{~J} / \mathrm{mol} \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot 60 \mathrm{~A}}{[\text { Avaga-no }] \cdot 4 \mathrm{C} \cdot 3 \mathrm{C} \cdot\left([\text { Charge-e }]^{2}\right) \cdot\left(1-\left(\frac{60.44 \mathrm{~A}}{60 \mathrm{~A}}\right)\right)}$
4) Madelung Constant using Kapustinskii Approximation
$f_{x} \mathrm{M}=0.88 \cdot \mathrm{~N}_{\text {ions }}$
Open Calculator
ex $1.76=0.88 \cdot 2$
5) Madelung Constant using Madelung Energy
$\mathbf{f x} \mathrm{M}=\frac{-\left(\mathrm{E}_{\mathrm{M}}\right) \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot \mathrm{r}_{0}}{\left(\mathrm{q}^{2}\right) \cdot\left([\text { Charge-e }]^{2}\right)}$
ex $1.704092=\frac{-\left(-5.9 \mathrm{E}^{\wedge}-21 \mathrm{~J}\right) \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot 60 \mathrm{~A}}{\left((0.3 \mathrm{C})^{2}\right) \cdot\left([\text { Charge-e }]^{2}\right)}$
6) Madelung Constant using Total Energy of Ion
$\mathrm{M}=\frac{\left(\mathrm{E}_{\text {tot }}-\left(\frac{\mathrm{B}_{\mathrm{M}}}{\mathrm{r}_{0-}^{\mathrm{n}\{\text { born }\}}}\right)\right) \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot \mathrm{r}_{0}}{-\left(\mathrm{q}^{2}\right) \cdot\left([\text { Charge-e }]^{2}\right)}$

ex

$1.695387=\frac{\left(7.02 \mathrm{E}^{\wedge}-23 \mathrm{~J}-\left(\frac{4.1 \mathrm{E}^{\wedge}-29}{(60 \mathrm{~A})^{0.9926}}\right)\right) \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot 60 \mathrm{~A}}{-\left((0.3 \mathrm{C})^{2}\right) \cdot\left([\text { Charge-e }]^{2}\right)}$
7) Madelung Constant using Total Energy of Ion given Repulsive Interaction

$$
\mathrm{M}=\frac{\left(\mathrm{E}_{\mathrm{tot}}-\mathrm{E}\right) \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot \mathrm{r}_{0}}{-\left(\mathrm{q}^{2}\right) \cdot\left([\text { Charge-e }]^{2}\right)}
$$

ex

$$
1.692481=\frac{\left(7.02 \mathrm{E}^{\wedge}-23 \mathrm{~J}-5.93 \mathrm{E}^{\wedge}-21 \mathrm{~J}\right) \cdot 4 \cdot \pi \cdot[\text { Permitivity-vacuum }] \cdot 60 \mathrm{~A}}{-\left((0.3 \mathrm{C})^{2}\right) \cdot\left([\text { Charge-e }]^{2}\right)}
$$

8) Madelung Energy

$$
\mathrm{M} \cdot\left(\mathrm{q}^{2}\right) \cdot\left([\text { Charge-e }]^{2}\right)
$$

9) Madelung Energy using Total Energy of Ion

$f \mathrm{f} \mathrm{E}_{\mathrm{M}}=\mathrm{E}_{\text {tot }}-\mathrm{E}$

ex $-5.9 \mathrm{E}^{\wedge}-21 \mathrm{~J}=7.02 \mathrm{E}^{\wedge}-23 \mathrm{~J}-5.93 \mathrm{E}^{\wedge}-21 \mathrm{~J}$
10) Madelung Energy using Total Energy of Ion given Distance
$f \times \mathrm{E}_{\mathrm{M}}=\mathrm{E}_{\text {tot }}-\left(\frac{\mathrm{B}_{\mathrm{M}}}{\mathrm{r}_{0}^{\mathrm{n}}-\{\text { born }\}}\right)$
ex $-5.9 \mathrm{E}^{\wedge}-21 \mathrm{~J}=7.02 \mathrm{E}^{\wedge}-23 \mathrm{~J}-\left(\frac{4.1 \mathrm{E}^{\wedge}-29}{(60 \mathrm{~A})^{0.9926}}\right)$

Variables Used

- B_{M} Repulsive Interaction Constant given M
- E Repulsive Interaction between Ions (Joule)
- $\mathbf{E}_{\mathbf{M}}$ Madelung Energy (Joule)
- $E_{\text {tot }}$ Total energy of Ion in an Ionic Crystal (Joule)
- M Madelung Constant
- $\mathbf{n}_{\text {born }}$ Born Exponent
- $\mathbf{N}_{\text {ions }}$ Number of lons
- q Charge (Coulomb)
- $\mathbf{r}_{\mathbf{0}}$ Distance of Closest Approach (Angstrom)
- U Lattice Energy (Joule per Mole)
- z^{-}Charge of Anion (Coulomb)
- \mathbf{z}^{+}Charge of Cation (Coulomb)
- $\boldsymbol{\rho}$ Constant Depending on Compressibility (Angstrom)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [Avaga-no], 6.02214076E23

Avogadro's number

- Constant: [Charge-e], 1.60217662E-19 Coulomb Charge of electron
- Constant: [Permitivity-vacuum], 8.85E-12 Farad / Meter Permittivity of vacuum
- Measurement: Length in Angstrom (A)

Length Unit Conversion

- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Electric Charge in Coulomb (C)

Electric Charge Unit Conversion

- Measurement: Molar Enthalpy in Joule per Mole (J/mol) Molar Enthalpy Unit Conversion

Check other formula lists

- Madelung Constant Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

