

Madelung Constant Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Madelung Constant Formulas

Madelung Constant 🗗

1) Madelung Constant given Repulsive Interaction Constant 💪

$$\mathbf{M} = \frac{B_{M} \cdot 4 \cdot \pi \cdot [Permitivity\text{-}vacuum] \cdot n_{born}}{\left(q^{2}\right) \cdot \left(\left[Charge\text{-}e\right]^{2}\right) \cdot \left(r_{0}^{n_{born}-1}\right)}$$

Open Calculator

Open Calculator

$$\boxed{1.702967 = \frac{4.1 \text{E}^-29 \cdot 4 \cdot \pi \cdot [\text{Permitivity-vacuum}] \cdot 0.9926}{\left((0.3 \text{C})^2\right) \cdot \left([\text{Charge-e}]^2\right) \cdot \left((60 \text{A})^{0.9926-1}\right)}}$$

2) Madelung Constant using Born Lande Equation 🖸

$$\mathbf{M} = rac{-\mathbf{U} \cdot \mathbf{4} \cdot \mathbf{\pi} \cdot [ext{Permittivity-vacuum}] \cdot \mathbf{r}_0}{\left(1 - \left(rac{1}{\mathrm{n}_{\mathrm{born}}}
ight)
ight) \cdot \left([ext{Charge-e}]^2
ight) \cdot [ext{Avaga-no}] \cdot \mathbf{z}^+ \cdot \mathbf{z}^-}$$

$$\boxed{ 1.688737 = \frac{-3500 \mathrm{J/mol} \cdot 4 \cdot \pi \cdot [\mathrm{Permitivity\text{-}vacuum}] \cdot 60 \mathrm{A} }{\left(1 - \left(\frac{1}{0.9926}\right)\right) \cdot \left([\mathrm{Charge\text{-}e}]^2\right) \cdot [\mathrm{Avaga\text{-}no}] \cdot 4 \mathrm{C} \cdot 3 \mathrm{C} } }$$

fx

3) Madelung Constant using Born-Mayer equation

fx

Open Calculator

$$\mathbf{M} = rac{-\mathrm{U} \cdot 4 \cdot \pi \cdot [\mathrm{Permitivity ext{-}vacuum}] \cdot r_0}{[\mathrm{Avaga ext{-}no}] \cdot \mathrm{z}^+ \cdot \mathrm{z}^ ext{-} \cdot \left([\mathrm{Charge ext{-}e}]^2
ight) \cdot \left(1 - \left(rac{
ho}{\mathrm{r_0}}
ight)
ight)}$$

$$\boxed{ 1.716794 = \frac{-3500 \mathrm{J/mol} \cdot 4 \cdot \pi \cdot [\mathrm{Permitivity\text{-}vacuum}] \cdot 60 \mathrm{A} }{[\mathrm{Avaga\text{-}no}] \cdot 4 \mathrm{C} \cdot 3 \mathrm{C} \cdot \left([\mathrm{Charge\text{-}e}]^2 \right) \cdot \left(1 - \left(\frac{60.44 \mathrm{A}}{60 \mathrm{A}} \right) \right) } }$$

4) Madelung Constant using Kapustinskii Approximation

fx $M=0.88\cdot N_{\mathrm{ions}}$

Open Calculator

$$\texttt{ex} \ 1.76 = 0.88 \cdot 2$$

5) Madelung Constant using Madelung Energy

$$\mathbf{M} = \frac{-(E_{M}) \cdot 4 \cdot \pi \cdot [Permitivity\text{-}vacuum] \cdot r_{0}}{\left(q^{2}\right) \cdot \left(\left[Charge\text{-}e\right]^{2}\right)}$$

$$\boxed{1.704092 = \frac{-(\text{-}5.9\text{E}^{\text{-}}\text{-}21\text{J}) \cdot 4 \cdot \pi \cdot [\text{Permitivity-vacuum}] \cdot 60\text{A}}{\left(\left(0.3\text{C}\right)^{2}\right) \cdot \left([\text{Charge-e}]^{2}\right)}}$$

6) Madelung Constant using Total Energy of Ion

fx

$$M = \frac{\left(E_{tot} - \left(\frac{B_M}{r_{0-}^n\{born\}}\right)\right) \cdot 4 \cdot \pi \cdot [Permitivity\text{-}vacuum] \cdot r_0}{-(q^2) \cdot \left([Charge\text{-}e]^2\right)}$$

ex

$$1.695387 = \frac{\left(7.02 \text{E}^{-23} \text{J} - \left(\frac{4.1 \text{E}^{-29}}{(60 \text{A})^{0.9926}}\right)\right) \cdot 4 \cdot \pi \cdot [\text{Permitivity-vacuum}] \cdot 60 \text{A}}{-\left(\left(0.3 \text{C}\right)^{2}\right) \cdot \left([\text{Charge-e}]^{2}\right)}$$

7) Madelung Constant using Total Energy of Ion given Repulsive Interaction 🗲

Open Calculator

$$ext{M} = rac{\left(ext{E}_{ ext{tot}} - ext{E}
ight) \cdot 4 \cdot \pi \cdot \left[ext{Permittivity-vacuum}
ight] \cdot ext{r}_0}{-\left(ext{q}^2
ight) \cdot \left(\left[ext{Charge-e}
ight]^2
ight)}$$

ex

$$1.692481 = \frac{\left(7.02 \text{E}^2 - 23 \text{J} - 5.93 \text{E}^2 - 21 \text{J}\right) \cdot 4 \cdot \pi \cdot \left[\text{Permitivity-vacuum}\right] \cdot 60 \text{A}}{-\left(\left(0.3 \text{C}\right)^2\right) \cdot \left(\left[\text{Charge-e}\right]^2\right)}$$

8) Madelung Energy C

$$\mathbf{E}_{\mathrm{M}} = -rac{\mathrm{M}\cdot\left(\mathrm{q}^{2}
ight)\cdot\left(\left[\mathrm{Charge-e}
ight]^{2}
ight)}{4\cdot\pi\cdot\left[\mathrm{Permitivity-vacuum}
ight]\cdot\mathrm{r}_{0}}$$

Open Calculator

$$= -5.9 \text{E}^{-21} \text{J} = -\frac{1.7 \cdot \left(\left(0.3 \text{C} \right)^2 \right) \cdot \left(\left[\text{Charge-e} \right]^2 \right)}{4 \cdot \pi \cdot \left[\text{Permitivity-vacuum} \right] \cdot 60 \text{A} }$$

9) Madelung Energy using Total Energy of Ion

fx ${
m E_{M}}={
m E_{tot}}-{
m E}$

Open Calculator 🗗

- $ex -5.9E^2 -21J = 7.02E^2 -23J 5.93E^2 -21J$
- 10) Madelung Energy using Total Energy of Ion given Distance
- $\mathbf{E}_{\mathrm{M}} = \mathrm{E}_{\mathrm{tot}} \left(rac{\mathrm{B}_{\mathrm{M}}}{\mathrm{r}_{\mathrm{0}}^{\mathrm{n}} \{\mathrm{born}\}}
 ight)$

Open Calculator

 $oxed{oxed{ex}} ext{-5.9E^--21J} = 7.02 ext{E^--23J} - \left(rac{4.1 ext{E^--29}}{(60 ext{A})^{0.9926}}
ight)$

Variables Used

- B_M Repulsive Interaction Constant given M
- **E** Repulsive Interaction between Ions (*Joule*)
- E_M Madelung Energy (Joule)
- Etot Total energy of Ion in an Ionic Crystal (Joule)
- M Madelung Constant
- n_{born} Born Exponent
- Nions Number of Ions
- **q** Charge (Coulomb)
- **r**₀ Distance of Closest Approach (Angstrom)
- **U** Lattice Energy (Joule per Mole)
- **z** Charge of Anion (Coulomb)
- **z**⁺ Charge of Cation (Coulomb)
- p Constant Depending on Compressibility (Angstrom)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Constant: [Avaga-no], 6.02214076E23 Avogadro's number
- Constant: [Charge-e], 1.60217662E-19 Coulomb Charge of electron
- Constant: [Permitivity-vacuum], 8.85E-12 Farad / Meter Permittivity of vacuum
- Measurement: Length in Angstrom (A)
 Length Unit Conversion
- Measurement: Energy in Joule (J)
 Energy Unit Conversion
- Measurement: Electric Charge in Coulomb (C)
 Electric Charge Unit Conversion
- Measurement: Molar Enthalpy in Joule per Mole (J/mol)

 Molar Enthalpy Unit Conversion

Check other formula lists

Madelung Constant Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/1/2023 | 12:28:13 PM UTC

Please leave your feedback here...

