
calculatoratoz.com

unitsconverters.com

Manufacturing and Purchase Model Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Manufacturing and Purchase Model Formulas

Manufacturing and Purchase Model ©

1) EOQ Manufacturing Model with No Shortage

C

$f x \mathrm{EOQ}_{\mathrm{m}}=\sqrt{\frac{2 \cdot \mathrm{C}_{0} \cdot \mathrm{D}}{\mathrm{C}_{\mathrm{c}} \cdot\left(1-\frac{\mathrm{D}}{\mathrm{K}}\right)}}$
ex $1414.214=\sqrt{\frac{2 \cdot 200 \cdot 10000}{4 \cdot\left(1-\frac{10000}{20000}\right)}}$
2) EOQ Manufacturing Model with Shortage $\boxed{\Omega}$
$\mathrm{fx} \mathrm{EOQ}_{\mathrm{ms}}=\sqrt{2 \cdot \mathrm{D} \cdot \mathrm{C}_{0} \cdot \frac{\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{\mathrm{c}}}{\mathrm{C}_{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{s}} \cdot\left(1-\frac{\mathrm{D}}{\mathrm{K}}\right)}}$
ex $1523.155=\sqrt{2 \cdot 10000 \cdot 200 \cdot \frac{25+4}{4 \cdot 25 \cdot\left(1-\frac{10000}{20000}\right)}}$
3) EOQ Purchase Model with No Shortage
$\mathrm{fx} \mathrm{EOQ}_{\mathrm{p}}=\sqrt{2 \cdot \mathrm{D} \cdot \frac{\mathrm{C}_{0}}{\mathrm{C}_{\mathrm{c}}}}$
ex $1000=\sqrt{2 \cdot 10000 \cdot \frac{200}{4}}$
4) EOQ Purchase Model with Shortage
$\mathrm{fx} \mathrm{EOQ}_{\mathrm{ps}}=\sqrt{2 \cdot \mathrm{D} \cdot \frac{\mathrm{C}_{0}}{\mathrm{C}_{\mathrm{c}}} \cdot\left(\frac{\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{\mathrm{c}}}{\mathrm{C}_{\mathrm{s}}}\right)}$
ex $1077.033=\sqrt{2 \cdot 10000 \cdot \frac{200}{4} \cdot\left(\frac{25+4}{25}\right)}$
5) Maximum Inventory Manufacturing Model
$f \mathrm{f} \mathrm{Q}_{\mathrm{mfg}}=\left(1-\frac{\mathrm{D}}{\mathrm{K}}\right) \cdot \mathrm{EOQ}_{\mathrm{ms}}-\mathrm{Q}_{1}$
ex $97.4437=\left(1-\frac{10000}{20000}\right) \cdot 500-152.5563$
6) Maximum Inventory Purchase Model
$\mathrm{Ex}_{\mathrm{Q}}^{\mathrm{purch}} \mathrm{=} \sqrt{2 \cdot \mathrm{D} \cdot \frac{\mathrm{C}_{0}}{\mathrm{C}_{\mathrm{c}}} \cdot\left(\frac{\mathrm{C}_{\mathrm{s}}}{\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{\mathrm{c}}}\right)}$
Open Calculator
ex $928.4767=\sqrt{2 \cdot 10000 \cdot \frac{200}{4} \cdot\left(\frac{25}{25+4}\right)}$
7) Maximum Stock Out Manufacturing Model
$\mathrm{fx} \mathrm{Q}_{1}=\sqrt{2 \cdot \mathrm{D} \cdot \mathrm{C}_{0} \cdot \mathrm{C}_{\mathrm{s}} \cdot \frac{1-\frac{\mathrm{D}}{\mathrm{K}}}{\mathrm{C}_{\mathrm{c}} \cdot\left(\mathrm{C}_{\mathrm{c}}+\mathrm{C}_{\mathrm{s}}\right)}}$

Open Calculator

ex $656.5322=\sqrt{2 \cdot 10000 \cdot 200 \cdot 25 \cdot \frac{1-\frac{10000}{20000}}{4 \cdot(4+25)}}$
8) Maximum Stock Out Purchase Model
$f \mathrm{fx} \mathrm{Q}_{2}=\mathrm{EOQ}_{\mathrm{ps}}-\mathrm{Q}_{\text {purch }}$
Open Calculator
ex $148.5563=1077.033-928.4767$
9) Number of Order for Purchase Models with No Shortage

ex $10=\frac{10000}{1000}$
10) Total Cost for Purchase Model with No Shortage $\boxed{\boxed{y}}$
$f_{\mathrm{x}} \mathrm{TC}_{\mathrm{p}}=\mathrm{D} \cdot \mathrm{P}+\sqrt{2 \cdot \mathrm{D} \cdot \mathrm{C}_{\mathrm{c}} \cdot \mathrm{C}_{0}}$
ex $204000=10000 \cdot 20+\sqrt{2 \cdot 10000 \cdot 4 \cdot 200}$
11) Total Optimum Cost for Manufacturing Model
$\mathrm{fx} \mathrm{TOC}_{\mathrm{m}}=\sqrt{2 \cdot \mathrm{D} \cdot \mathrm{C}_{\mathrm{c}} \cdot \mathrm{C}_{0} \cdot\left(1-\frac{\mathrm{D}}{\mathrm{K}}\right)}$
ex $2828.427=\sqrt{2 \cdot 10000 \cdot 4 \cdot 200 \cdot\left(1-\frac{10000}{20000}\right)}$
12) Total Optimum Cost for Purchase Model
$\mathrm{fx} \mathrm{TOC}_{\mathrm{p}}=\sqrt{2 \cdot \mathrm{D} \cdot \mathrm{C}_{\mathrm{c}} \cdot \mathrm{C}_{0} \cdot \frac{\mathrm{C}_{\mathrm{s}}}{\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{\mathrm{c}}}}$
ex $3713.907=\sqrt{2 \cdot 10000 \cdot 4 \cdot 200 \cdot \frac{25}{25+4}}$

Variables Used

- C_{0} Order Cost
- $\mathbf{C}_{\mathbf{c}}$ Carrying Cost
- C_{s} Shortage Cost
- D Demand per Year
- $E O Q_{m}$ EOQ Manufacturing Model No Shortage
- $E_{\text {ms }} E O Q$ Manufacturing Model with Shortage
- $E O Q_{p}$ EOQ Purchase Model No Shortage
- $E O Q_{p s}$ EOQ Purchase Model
- K Production Rate
- N Number of Order Purchase Models no Shortage
- P Purchase Price
- \mathbf{Q}_{1} Maximum Stock out Manufacturing Model
- \mathbf{Q}_{2} Maximum Stock out Purchase Model
- $\mathbf{Q}_{\text {mfg }}$ Maximum Inventory Manufacturing Model
- Qpurch Maximum Inventory Purchase Model
- TC $_{p}$ Total Cost for Purchase Model No Shortage
- TOC ${ }_{m}$ Total Optimum Cost for Manufacturing Model
- TOC $_{\text {p }}$ Total Optimum Cost for Purchase Model

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

Check other formula lists

- Basics of Industrial Engineering - Manufacturing and Purchase Formulas
- Industrial Parameters Formulas Model Formulas
- Manufacturing Period Formulas
- Time Estimation Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

