

Fluid in Motion Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Fluid in Motion Formulas

Fluid in Motion

Flow Rate

1) Rate of Flow

fx
$$q_{
m flow} = A_{
m cs} \cdot v_{
m avg}$$

Open Calculator &

 $99.45 \mathrm{m}^3/\mathrm{s} = 1.3 \mathrm{m}^2 \cdot 76.5 \mathrm{m/s}$

2) Rate of Flow given Head loss in Laminar Flow

 $q_{
m flow} = {
m h_f} \cdot \gamma \cdot \pi \cdot rac{{
m d}_{
m pipe}^4}{128 \cdot \mu \cdot {
m L}_{
m pipe}}$

Open Calculator

ex
$$23.83758 \mathrm{m}^3/\mathrm{s} = 1.2 \mathrm{m} \cdot 112 \mathrm{N/m}^3 \cdot \pi \cdot \frac{(1.01 \mathrm{m})^4}{128 \cdot 1.44 \mathrm{N} \cdot 0.10 \mathrm{m}}$$

3) Rate of Flow given Hydraulic Transmission Power

 $\mathbf{f}_{\mathbf{x}} \mathbf{q}_{\mathrm{flow}} = rac{\mathrm{P}}{\mathrm{y} \cdot (\mathrm{H}_{\mathrm{ent}} - \mathrm{h_f})}$

Open Calculator 🗗

$$ext{ex} 72.11538 ext{m}^3/ ext{s} = rac{900 ext{W}}{31.2 ext{N/m}^3 \cdot (1.6 ext{m} - 1.2 ext{m})}$$

4) Volumetric Flow Rate at Vena Contracta

 $V = C_{
m d} \cdot A_{
m vena} \cdot \sqrt{2 \cdot g \cdot H_{
m w}}$

Open Calculator

 $\boxed{ 2.850908 m^3/s = 0.66 \cdot 0.611 m^2 \cdot \sqrt{2 \cdot 9.8 m/s^2 \cdot 2.55 m} }$

5) Volumetric Flow Rate of Circular Orifice

7 Totaliotile Flow Rate of Official Office

 $extbf{K} V = 0.62 \cdot ext{a} \cdot \sqrt{2 \cdot ext{g} \cdot ext{H}_{ ext{w}}}$

Open Calculator

 $ext{ex} \left[39.44867 ext{m}^3/ ext{s} = 0.62 \cdot 9 ext{m}^2 \cdot \sqrt{2 \cdot 9.8 ext{m}/ ext{s}^2 \cdot 2.55 ext{m}}
ight]$

6) Volumetric Flow Rate of Rectangular Notch

 $V = 0.62 \cdot \mathrm{b} \cdot \mathrm{H} \cdot rac{2}{3} \cdot \sqrt{2 \cdot \mathrm{g} \cdot \mathrm{H_w}}$

Open Calculator 🖸

 $ext{ex} 12.85734 ext{m}^3/ ext{s} = 0.62 \cdot 2.2 ext{m} \cdot 2 ext{m} \cdot rac{2}{3} \cdot \sqrt{2 \cdot 9.8 ext{m}/ ext{s}^2 \cdot 2.55 ext{m}}$

7) Volumetric Flow Rate of Triangular Right Angled Notch

 $ext{ex} 14.90581 ext{m}^3/ ext{s} = 2.635 \cdot (2 ext{m})^{rac{5}{2}}$

8) Volumetric Flow Rate of Venacontracta given Contraction and Velocity

$$V = \mathrm{C_c} \cdot \mathrm{C_v} \cdot \mathrm{A_{vena}} \cdot \sqrt{2 \cdot \mathrm{g} \cdot \mathrm{H_w}}$$

Open Calculator 🚰

$$\boxed{ \text{ex} } 59.6099 \text{m}^{_{3}}/\text{s} = 15 \cdot 0.92 \cdot 0.611 \text{m}^{_{2}} \cdot \sqrt{2 \cdot 9.8 \text{m}/\text{s}^{_{2}} \cdot 2.55 \text{m}}$$

Hydrodynamics Basics

9) Metacentric Height given Time Period of Rolling

 $ext{H}_{ ext{metacentric}} = rac{\left(ext{k}_{ ext{G}} \cdot \pi
ight)^2}{\left(\left(rac{ ext{T}}{2}
ight)^2
ight) \cdot ext{g}}$

Open Calculator

ex
$$0.730928m = \frac{(4.43m \cdot \pi)^2}{\left(\left(\frac{10.4s}{2}\right)^2\right) \cdot 9.8m/s^2}$$

10) Moment of Momentum Equation

au $au =
ho_1 \cdot \mathrm{Q} \cdot (\mathrm{v}_1 \cdot \mathrm{R}_1 - \mathrm{v}_2 \cdot \mathrm{R}_2)$

Open Calculator 🗗

$$= 252.904 \text{N*m} = 4 \text{kg/m}^3 \cdot 1.01 \text{m}^3 / \text{s} \cdot (20 \text{m/s} \cdot 1.67 \text{m} - 12 \text{m/s} \cdot 8 \text{m})$$

11) Poiseuille's Formula

 $\left|\mathbf{r}_{\mathrm{o}}^{4}\right| v_{\mathrm{o}} = \Delta p \cdot rac{\pi}{8} \cdot rac{r_{\mathrm{pipe}}^{4}}{\mu_{\mathrm{viscosity}} \cdot L}$

Open Calculator 🖸

 $ext{ex} 10.47345 ext{m}^3/ ext{s} = 3.36 ext{Pa} \cdot rac{\pi}{8} \cdot rac{(2.22 ext{m})^4}{1.02 ext{Pa}^* ext{s} \cdot 3 ext{m}}$

12) Power 🖸

fx $P = F \cdot \Delta v$

Open Calculator

ex $625\mathrm{W} = 2.5\mathrm{N} \cdot 250\mathrm{m/s}$

13) Power Developed by Turbine

 $P_{ ext{turbine}} =
ho_l \cdot Q \cdot V_{ ext{w1}} \cdot c_{t1}$

Open Calculator

ex $113.12 \mathrm{W} = 4 \mathrm{kg/m^3 \cdot 1.01 m^3/s \cdot 2m/s \cdot 14m/s}$

fx $P = y \cdot q_{flow} \cdot h_f$

Open Calculator 2

 $898.56 \mathrm{W} = 31.2 \mathrm{N/m^3 \cdot 24m^3/s \cdot 1.2m}$

14) Power Required to Overcome Frictional Resistance in Laminar Flow

15) Reynolds Number

 $\text{Re} = \frac{\rho_l \cdot v_{fluid} \cdot d_{pipe}}{\mu_{viscosity}}$

Open Calculator

 $= \frac{4 \text{kg/m}^3 \cdot 128 \text{m/s} \cdot 1.01 \text{m}}{1.02 \text{Pa*s}}$

16) Reynolds Number given Frictional Factor of Laminar Flow

 $m Re = rac{64}{f}$

Open Calculator 🗗

 $\boxed{101.5873 = \frac{64}{0.63}}$

17) Reynolds Number given Length

 $\operatorname{Re} =
ho_{
m l} \cdot {
m v} \cdot rac{{
m L}}{{
m v}}$

Open Calculator

 $extbf{ex} = 567.3759 = 4 ext{kg/m}^3 \cdot 60 ext{m/s} \cdot rac{3 ext{m}}{12.69 ext{kSt}}$

Variables Used

- a Area of Orifice (Square Meter)
- A_{cs} Cross-Sectional Area (Square Meter)
- A_{vena} Area of Jet at Vena Contracta (Square Meter)
- **b** Thickness of Dam (Meter)
- C_c Coefficient of Contraction
- C_d Coefficient of Discharge
- C₁₁ Tangential Velocity at Inlet (Meter per Second)
- C_v Coefficient of Velocity
- dpipe Pipe Diameter (Meter)
- f Friction Factor
- F Force (Newton)
- g Acceleration due to Gravity (Meter per Square Second)
- H Head of Water above Sill of Notch (Meter)
- Hent Total Head at Entrance (Meter)
- h_f Head Loss (Meter)
- H_{metacentric} Metacentric Height (Meter)
- **H**_w Head (Meter)
- k_G Radius of Gyration (Meter)
- L Length (Meter)
- Lpipe Length of Pipe (Meter)
- P Power (Watt)
- Pturbine Power Developed by Turbine (Watt)

- Q Discharge (Cubic Meter per Second)
- Q_{flow} Rate of Flow (Cubic Meter per Second)
- R₁ Radius of Curvature at Section 1 (Meter)
- R₂ Radius of Curvature at Section 2 (Meter)
- r_{pipe} Pipe Radius (Meter)
- Re Reynolds Number
- **T** Time Period of Rolling (Second)
- **v** Velocity (Meter per Second)
- **V** Volumetric Flow Rate (Cubic Meter per Second)
- V₁ Velocity at Section 1-1 (Meter per Second)
- V₂ Velocity at Section 2-2 (Meter per Second)
- Vava Average Velocity (Meter per Second)
- V_{fluid} Fluid Velocity (Meter per Second)
- Vo Volumetric Flow Rate of Feed to Reactor (Cubic Meter per Second)
- V_{w1} Velocity of Whirl at Inlet (Meter per Second)
- **y** Specific Weight of Liquid (Newton per Cubic Meter)
- Y Specific Weight (Newton per Cubic Meter)
- Δp Pressure Changes (Pascal)
- Δv Change in Velocity (Meter per Second)
- µ Viscous Force (Newton)
- µ_{viscosity} Dynamic Viscosity (Pascal Second)
- V Kinematic Viscosity (Kilostokes)
- ρ_I Density of Liquid (Kilogram per Cubic Meter)
- T Torque Exerted on Wheel (Newton Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Pressure in Pascal (Pa)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)
 Acceleration Unit Conversion
- Measurement: Power in Watt (W)
 Power Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)
 Volumetric Flow Rate Unit Conversion
- Measurement: Dynamic Viscosity in Pascal Second (Pa*s)
 Dynamic Viscosity Unit Conversion
- Measurement: Kinematic Viscosity in Kilostokes (kSt)
 Kinematic Viscosity Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

 Density Unit Conversion
- Measurement: Torque in Newton Meter (N*m)
 Torque Unit Conversion
- Measurement: Specific Weight in Newton per Cubic Meter (N/m³)

 Specific Weight Unit Conversion

Check other formula lists

- Fluid Force Formulas
- Fluid in Motion Formulas
- Hydrostatic Fluid Formulas
- Liquid Jet Formulas

- Pipes Formulas
- Pressure Relations Formulas
- Specific Weight Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/23/2024 | 6:11:40 AM UTC

Please leave your feedback here...

