
calculatoratoz.com

Fluid in Motion Formulas

Calculators!

Examples!
Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Fluid in Motion Formulas

Fluid in Motion ©

Flow Rate

1) Rate of Flow
$\mathrm{fx} \mathrm{q}_{\text {flow }}=\mathrm{A}_{\mathrm{cs}} \cdot \mathrm{v}_{\mathrm{avg}}$
Open Calculator
ex $99.45 \mathrm{~m}^{3} / \mathrm{s}=1.3 \mathrm{~m}^{2} \cdot 76.5 \mathrm{~m} / \mathrm{s}$
2) Rate of Flow given Head loss in Laminar Flow
$f \mathbf{f x} q_{\text {flow }}=\mathrm{h}_{\mathrm{f}} \cdot \gamma \cdot \pi \cdot \frac{\mathrm{d}_{\text {pipe }}^{4}}{128 \cdot \mu \cdot \mathrm{~L}_{\text {pipe }}}$
ex $23.83758 \mathrm{~m}^{3} / \mathrm{s}=1.2 \mathrm{~m} \cdot 112 \mathrm{~N} / \mathrm{m}^{3} \cdot \pi \cdot \frac{(1.01 \mathrm{~m})^{4}}{128 \cdot 1.44 \mathrm{~N} \cdot 0.10 \mathrm{~m}}$
3) Rate of Flow given Hydraulic Transmission Power 5
fx $q_{\text {flow }}=\frac{P}{y \cdot\left(H_{\text {ent }}-h_{f}\right)}$
ex $72.11538 \mathrm{~m}^{3} / \mathrm{s}=\frac{900 \mathrm{~W}}{31.2 \mathrm{~N} / \mathrm{m}^{3} \cdot(1.6 \mathrm{~m}-1.2 \mathrm{~m})}$
4) Volumetric Flow Rate at Vena Contracta
$f_{\mathrm{x}} \mathrm{V}=\mathrm{C}_{\mathrm{d}} \cdot \mathrm{A}_{\text {vena }} \cdot \sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{H}_{\mathrm{w}}}$
ex $2.850908 \mathrm{~m}^{3} / \mathrm{s}=0.66 \cdot 0.611 \mathrm{~m}^{2} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 2.55 \mathrm{~m}}$
5) Volumetric Flow Rate of Circular Orifice
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}=0.62 \cdot \mathrm{a} \cdot \sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{H}_{\mathrm{w}}}$
Open Calculator
ex $39.44867 \mathrm{~m}^{3} / \mathrm{s}=0.62 \cdot 9 \mathrm{~m}^{2} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 2.55 \mathrm{~m}}$
6) Volumetric Flow Rate of Rectangular Notch

$$
\begin{aligned}
& f_{\mathrm{x}} \mathrm{~V}=0.62 \cdot \mathrm{~b} \cdot \mathrm{H} \cdot \frac{2}{3} \cdot \sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{H}_{\mathrm{w}}} \\
& \mathrm{ex} 12.85734 \mathrm{~m}^{3} / \mathrm{s}=0.62 \cdot 2.2 \mathrm{~m} \cdot 2 \mathrm{~m} \cdot \frac{2}{3} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 2.55 \mathrm{~m}}
\end{aligned}
$$

Open Calculator
7) Volumetric Flow Rate of Triangular Right Angled Notch
$f \mathrm{f} V=2.635 \cdot \mathrm{H}^{\frac{5}{2}}$
Open Calculator
ex $14.90581 \mathrm{~m}^{3} / \mathrm{s}=2.635 \cdot(2 \mathrm{~m})^{\frac{5}{2}}$
8) Volumetric Flow Rate of Venacontracta given Contraction and Velocity $\boxed{\square}$
$\mathrm{f}_{\mathrm{x}} \mathrm{V}=\mathrm{C}_{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{v}} \cdot \mathrm{A}_{\text {vena }} \cdot \sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{H}_{\mathrm{w}}}$
ex $59.6099 \mathrm{~m}^{3} / \mathrm{s}=15 \cdot 0.92 \cdot 0.611 \mathrm{~m}^{2} \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 2.55 \mathrm{~m}}$

Hydrodynamics Basics ©

9) Metacentric Height given Time Period of Rolling
$f \mathrm{fx} \mathrm{H}_{\text {metacentric }}=\frac{\left(\mathrm{k}_{\mathrm{G}} \cdot \pi\right)^{2}}{\left(\left(\frac{\mathrm{~T}}{2}\right)^{2}\right) \cdot \mathrm{g}}$
Open Calculator
$\mathrm{ex} 0.730928 \mathrm{~m}=\frac{(4.43 \mathrm{~m} \cdot \pi)^{2}}{\left(\left(\frac{10.4 \mathrm{~s}}{2}\right)^{2}\right) \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}$
10) Moment of Momentum Equation
$\mathrm{fx} \tau=\rho_{\mathrm{l}} \cdot \mathrm{Q} \cdot\left(\mathrm{v}_{1} \cdot \mathrm{R}_{1}-\mathrm{v}_{2} \cdot \mathrm{R}_{2}\right)$
Open Calculator
ex $-252.904 \mathrm{~N}^{*} \mathrm{~m}=4 \mathrm{~kg} / \mathrm{m}^{3} \cdot 1.01 \mathrm{~m}^{3} / \mathrm{s} \cdot(20 \mathrm{~m} / \mathrm{s} \cdot 1.67 \mathrm{~m}-12 \mathrm{~m} / \mathrm{s} \cdot 8 \mathrm{~m})$

11) Poiseuille's Formula

$f \mathrm{x} \mathrm{v}_{\mathrm{o}}=\Delta \mathrm{p} \cdot \frac{\pi}{8} \cdot \frac{r_{\text {pipe }}^{4}}{\mu_{\text {viscosity }} \cdot L}$
ex $10.47345 \mathrm{~m}^{3} / \mathrm{s}=3.36 \mathrm{~Pa} \cdot \frac{\pi}{8}$.
$(2.22 \mathrm{~m})^{4}$
$1.02 \mathrm{~Pa}^{*} \cdot 3 \mathrm{~m}$
12) Power
$f x P=F \cdot \Delta v$
Open Calculator

ex $625 \mathrm{~W}=2.5 \mathrm{~N} \cdot 250 \mathrm{~m} / \mathrm{s}$

13) Power Developed by Turbine
$f \times P_{\text {turbine }}=\rho_{l} \cdot Q \cdot V_{w 1} \cdot c_{\mathrm{t} 1}$
Open Calculator
ex $113.12 \mathrm{~W}=4 \mathrm{~kg} / \mathrm{m}^{3} \cdot 1.01 \mathrm{~m}^{3} / \mathrm{s} \cdot 2 \mathrm{~m} / \mathrm{s} \cdot 14 \mathrm{~m} / \mathrm{s}$
14) Power Required to Overcome Frictional Resistance in Laminar Flow
f. $\mathrm{P}=\mathrm{y} \cdot \mathrm{q}_{\text {flow }} \cdot \mathrm{h}_{\mathrm{f}}$

Open Calculator
ex $898.56 \mathrm{~W}=31.2 \mathrm{~N} / \mathrm{m}^{3} \cdot 24 \mathrm{~m}^{3} / \mathrm{s} \cdot 1.2 \mathrm{~m}$
15) Reynolds Number

$$
f_{\mathrm{x}} \operatorname{Re}=\frac{\rho_{\mathrm{l}} \cdot \mathrm{v}_{\text {fluid }} \cdot \mathrm{d}_{\text {pipe }}}{\mu_{\text {viscosity }}}
$$

ex $506.9804=\frac{4 \mathrm{~kg} / \mathrm{m}^{3} \cdot 128 \mathrm{~m} / \mathrm{s} \cdot 1.01 \mathrm{~m}}{1.02 \mathrm{~Pa}^{*} \mathrm{~s}}$
16) Reynolds Number given Frictional Factor of Laminar Flow
$f_{x} R e=\frac{64}{f}$
ex $101.5873=\frac{64}{0.63}$
17) Reynolds Number given Length
$f_{\mathbf{x}} \operatorname{Re}=\rho_{l} \cdot v \cdot \frac{L}{v}$
ex $567.3759=4 \mathrm{~kg} / \mathrm{m}^{3} \cdot 60 \mathrm{~m} / \mathrm{s} \cdot \frac{3 \mathrm{~m}}{12.69 \mathrm{kSt}}$

Variables Used

- a Area of Orifice (Square Meter)
- $\mathbf{A}_{\mathbf{c s}}$ Cross-Sectional Area (Square Meter)
- $\mathbf{A}_{\text {vena }}$ Area of Jet at Vena Contracta (Square Meter)
- b Thickness of Dam (Meter)
- $\mathbf{C}_{\mathbf{c}}$ Coefficient of Contraction
- $\mathbf{C}_{\mathbf{d}}$ Coefficient of Discharge
- $\mathbf{C}_{\mathbf{t} 1}$ Tangential Velocity at Inlet (Meter per Second)
- $\mathbf{C}_{\mathbf{v}}$ Coefficient of Velocity
- $\mathbf{d}_{\text {pipe }}$ Pipe Diameter (Meter)
- f Friction Factor
- F Force (Newton)
- \mathbf{g} Acceleration due to Gravity (Meter per Square Second)
- H Head of Water above Sill of Notch (Meter)
- Hent Total Head at Entrance (Meter)
- $\mathbf{h}_{\mathbf{f}}$ Head Loss (Meter)
- $\mathrm{H}_{\text {metacentric }}$ Metacentric Height (Meter)
- $\mathrm{H}_{\mathbf{w}}$ Head (Meter)
- $\mathbf{k}_{\mathbf{G}}$ Radius of Gyration (Meter)
- L Length (Meter)
- L Lipe Length of Pipe (Meter)
- P Power (Watt)
- $\mathbf{P}_{\text {turbine }}$ Power Developed by Turbine (Watt)
- Q Discharge (Cubic Meter per Second)
- Gflow Rate of Flow (Cubic Meter per Second)
- \mathbf{R}_{1} Radius of Curvature at Section 1 (Meter)
- $\mathbf{R}_{\mathbf{2}}$ Radius of Curvature at Section 2 (Meter)
- $\mathbf{r}_{\text {pipe }}$ Pipe Radius (Meter)
- Re Reynolds Number
- T Time Period of Rolling (Second)
- V Velocity (Meter per Second)
- V Volumetric Flow Rate (Cubic Meter per Second)
- $\mathbf{v}_{\mathbf{1}}$ Velocity at Section 1-1 (Meter per Second)
- $\mathbf{V}_{\mathbf{2}}$ Velocity at Section 2-2 (Meter per Second)
- $\mathbf{v}_{\text {avg }}$ Average Velocity (Meter per Second)
- $\mathbf{V}_{\text {fluid }}$ Fluid Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{0}}$ Volumetric Flow Rate of Feed to Reactor (Cubic Meter per Second)
- $\mathbf{V}_{\mathbf{w} 1}$ Velocity of Whirl at Inlet (Meter per Second)
- y Specific Weight of Liquid (Newton per Cubic Meter)
- Y Specific Weight (Newton per Cubic Meter)
- $\Delta \mathrm{p}$ Pressure Changes (Pascal)
- $\boldsymbol{\Delta v}$ Change in Velocity (Meter per Second)
- $\boldsymbol{\mu}$ Viscous Force (Newton)
- $\mu_{\text {viscosity }}$ Dynamic Viscosity (Pascal Second)
- V Kinematic Viscosity (Kilostokes)
- $\boldsymbol{\rho}_{\boldsymbol{I}}$ Density of Liquid (Kilogram per Cubic Meter)
- T Torque Exerted on Wheel (Newton Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion $\sqrt{ }$

- Measurement: Acceleration in Meter per Square Second ($\mathrm{m} / \mathrm{s}^{2}$)

Acceleration Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Dynamic Viscosity in Pascal Second (Pa*s) Dynamic Viscosity Unit Conversion
- Measurement: Kinematic Viscosity in Kilostokes (kSt) Kinematic Viscosity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

Density Unit Conversion

- Measurement: Torque in Newton Meter (N*m)

Torque Unit Conversion $\sqrt{ }$

- Measurement: Specific Weight in Newton per Cubic Meter ($\mathrm{N} / \mathrm{m}^{3}$) Specific Weight Unit Conversion

Check other formula lists

- Fluid Force Formulas
- Fluid in Motion Formulas
- Hydrostatic Fluid Formulas
- Liquid Jet Formulas
- Pipes Formulas
- Pressure Relations Formulas
- Specific Weight Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

