

Torsional Vibrations Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 29 Torsional Vibrations Formulas

Torsional Vibrations

Effect of Inertia of Constraint on Torsional Vibrations

fx
$$\omega = rac{\omega_{\mathrm{f}} \cdot \mathrm{x}}{\mathrm{l}}$$

ex
$$11.23465 \text{rad/s} = \frac{22.5 \text{rad/s} \cdot 3.66 \text{mm}}{7.33 \text{mm}}$$

2) Angular Velocity of Free End using Kinetic Energy of Constraint 🕑

fx
$$\omega_{\rm f} = \sqrt{\frac{6 \cdot {\rm KE}}{{\rm I_c}}}$$

ex 22.5176rad/s = $\sqrt{\frac{6 \cdot 900 {\rm J}}{10.65 {\rm kg} \cdot {\rm m}^2}}$

Open Calculator

Open Calculator 🕑

3) Kinetic Energy Possessed by Element 子

$$fx \quad KE = \frac{I_c \cdot (\omega_f \cdot x)^2 \cdot \delta x}{2 \cdot l^3}$$

$$ex \quad 900.4226J = \frac{10.65 \text{kg} \cdot \text{m}^2 \cdot (22.5 \text{ rad/s} \cdot 3.66 \text{ mm})^2 \cdot 9.82 \text{ mm}}{2 \cdot (7.33 \text{ mm})^3}$$

$$fx \quad I = \frac{\delta x \cdot I_c}{1}$$

$$fx \quad I = \frac{\delta x \cdot I_c}{1}$$

$$ex \quad 14.2678 \text{kg} \cdot \text{m}^2 = \frac{9.82 \text{ mm} \cdot 10.65 \text{kg} \cdot \text{m}^2}{7.33 \text{ mm}}$$

$$fx \quad Simple for the second seco$$

5) Natural Frequency of Torsional Vibration due to Effect of Inertia of Constraint

$$fx f = \frac{\sqrt{\frac{q}{I_{disc} + \frac{I_c}{3}}}}{2 \cdot \pi}$$

$$ex 0.118444 Hz = \frac{\sqrt{\frac{5.4N/m}{6.2kg \cdot m^2 + \frac{10.65kg \cdot m^2}{3}}}}{2 \cdot \pi}$$

6) Torsional Stiffness of Shaft due to Effect of Constraint on Torsional Vibrations

$$\mathbf{fx} \quad \mathbf{q} = (2 \cdot \pi \cdot \mathbf{f})^2 \cdot \left(\mathbf{I}_{\text{disc}} + \frac{\mathbf{I}_c}{3}\right)$$
Open Calculator
$$\mathbf{fx}$$

$$\mathbf{q} = (2 \cdot \pi \cdot \mathbf{f})^2 \cdot \left(\mathbf{I}_{\text{disc}} + \frac{\mathbf{I}_c}{3}\right)$$

$$\mathbf{ex} \quad 5.54277 \text{N/m} = (2 \cdot \pi \cdot 0.120 \text{Hz})^2 \cdot \left(6.2 \text{kg} \cdot \text{m}^2 + \frac{10.65 \text{kg} \cdot \text{m}^2}{3}\right)$$
7) Total Kinetic Energy of Constraint
$$\mathbf{fx}$$

$$\mathbf{KE} = \frac{\mathbf{I}_c \cdot \omega_f^2}{6}$$
Open Calculator
$$\mathbf{fx}$$

$$\mathbf{KE} = \frac{\mathbf{I}_c \cdot \omega_f^2}{6}$$
8) Total Mass Moment of Inertia of Constraint given Kinetic Energy of Constraint
$$\mathbf{fx}$$

$$\mathbf{I}_c = \frac{\mathbf{6} \cdot \text{KE}}{\omega_f^2}$$
Open Calculator
$$\mathbf{fx}$$

$$\mathbf{I}_c = \frac{\mathbf{6} \cdot \text{KE}}{\omega_f^2}$$

$$\mathbf{10.66667 \text{kg} \cdot \text{m}^2 = \frac{\mathbf{6} \cdot 900 \text{J}}{(22.5 \text{ rad/s})^2}$$

Free Torsional Vibrations of Rotor Systems C

Free Torsional Vibrations of Single Rotor System 🕑

9) Modulus of Rigidity of Shaft for Free Torsional Vibration of Single Rotor System

$$\textbf{G} = \frac{\left(2 \cdot \pi \cdot f\right)^2 \cdot L \cdot I_{shaft}}{J_{shaft}}$$

$$\textbf{Open Calculator}$$

$$\textbf{S} = \frac{\left(2 \cdot \pi \cdot f\right)^2 \cdot L \cdot I_{shaft}}{J_{shaft}}$$

$$\textbf{Open Calculator}$$

10) Natural Frequency of Free Torsional Vibration of Single Rotor System

Open Calculator

5/16

Free Torsional Vibrations of Two Rotor System 🕑

11) Distance of Node from Rotor A, for Torsional Vibration of Two Rotor System

fx
$$l_A = \frac{I_B \cdot l_B}{I_{A \text{ rotor}}}$$

ex $14.4 \text{mm} = \frac{36 \text{kg} \cdot \text{m}^2 \cdot 3.2 \text{mm}}{8 \text{kg} \cdot \text{m}^2}$

12) Distance of Node from Rotor B, for Torsional Vibration of Two Rotor System

13) Mass Moment of Inertia of Rotor A, for Torsional Vibration of Two Rotor System

Open Calculator

Open Calculator

 $I_{B rotor} =$

14) Mass Moment of Inertia of Rotor B, for Torsional Vibration of Two Rotor System

Open Calculator 🖸

Open Calculator

ex
$$81 \text{kg} \cdot \text{m}^2 = rac{18 \text{kg} \cdot \text{m}^2 \cdot 14.4 \text{mm}}{3.2 \text{mm}}$$

 $I_A \cdot l_A$

15) Natural Frequency of Free Torsional Vibration for Rotor A of Two Rotor System

$$f_{x} f = \frac{\sqrt{\frac{G \cdot J}{l_{A} \cdot l_{A \text{ rotor}}}}}{2 \cdot \pi}$$

$$e_{x} 0.296568 \text{Hz} = \frac{\sqrt{\frac{40 \text{N/m}^{2} \cdot 0.01 \text{m}^{4}}{14.4 \text{mm} \cdot 8 \text{kg} \cdot \text{m}^{2}}}}{2 \cdot \pi}$$

16) Natural Frequency of Free Torsional Vibration for Rotor B of Two Rotor System

$$fx f = \frac{\sqrt{\frac{G \cdot J}{l_B \cdot I_B \text{ rotor}}}}{2 \cdot \pi}$$

$$ex 0.200708 \text{Hz} = \frac{\sqrt{\frac{400 / \text{m}^2 \cdot 0.01 \text{m}^4}{3.2 \text{mm} \cdot 78.6 \text{kg} \cdot \text{m}^2}}}{2 \cdot \pi}$$

Natural Frequency of Free Torsional Vibrations C

20) Moment of Inertia of Disc given Angular Velocity 🖸

ex
$$6.194196 \text{kg} \cdot \text{m}^2 = rac{777 \text{N/m}}{\left(11.2 \text{rad/s}
ight)^2}$$

21) Moment of Inertia of Disc given Time Period of Vibration 🕑

fx
$$I_{
m disc} = rac{{
m t}_{
m p}^2 \cdot {
m q}}{\left(2 \cdot \pi
ight)^2}$$

ex
$$1.231052 \text{kg} \cdot \text{m}^2 = \frac{(3\text{s})^2 \cdot 5.4 \text{N/m}}{(2 \cdot \pi)^2}$$

22) Moment of Inertia of Disc using Natural Frequency of Vibration

Open Calculator 🕑

Open Calculator

fx
$$I_{disc} = \frac{4}{(2 \cdot \pi \cdot f)^2}$$

ex $9.498861 \text{kg} \cdot \text{m}^2 = \frac{5.4 \text{N/m}}{(2 \cdot \pi \cdot 0.120 \text{Hz})^2}$

a

23) Natural Frequency of Vibration 🕑

27) Torsional Stiffness of Shaft given Angular Velocity 🕑

$$fx \ q_{shaft} = \omega^2 \cdot I_{disc}$$
Open Calculator (*)

ex 777.728N/m = $(11.2rad/s)^2 \cdot 6.2kg \cdot m^2$

28) Torsional Stiffness of Shaft given Natural Frequency of Vibration (*)

fx $q = (2 \cdot \pi \cdot f)^2 \cdot I_{disc}$
Open Calculator (*)

ex $3.524633N/m = (2 \cdot \pi \cdot 0.120Hz)^2 \cdot 6.2kg \cdot m^2$

29) Torsional Stiffness of Shaft given Time Period of Vibration (*)

fx $q = \frac{(2 \cdot \pi)^2 \cdot I_{disc}}{(t_p)^2}$

ex $27.19624N/m = \frac{(2 \cdot \pi)^2 \cdot 6.2kg \cdot m^2}{(3s)^2}$

Variables Used

- **f** Frequency (Hertz)
- **F** Force (Newton)
- Frestoring Restoring Force (Newton)
- **G** Modulus of Rigidity (Newton per Square Meter)
- I Moment of Inertia (Kilogram Square Meter)
- IA rotor Mass Moment of Inertia of Rotor A (Kilogram Square Meter)
- I_A Mass Moment of Inertia of Mass Attached to Shaft A (Kilogram Square Meter)
- IB rotor Mass Moment of Inertia of Rotor B (Kilogram Square Meter)
- I_B Mass Moment of Inertia of Mass Attached to Shaft B (Kilogram Square Meter)
- I_c Total Mass Moment of Inertia (Kilogram Square Meter)
- Idisc Mass Moment of Inertia of Disc (Kilogram Square Meter)
- Ishaft Moment of inertia of Shaft (Kilogram Square Meter)
- J Polar Moment of Inertia (Meter⁴)
- J_{shaft} Polar Moment of Inertia of Shaft (Meter⁴)
- KE Kinetic Energy (Joule)
- I Length of Constraint (Millimeter)
- L Length of Shaft (Millimeter)
- IA Distance of Node from Rotor A (Millimeter)
- IB Distance of Node from Rotor B (Millimeter)
- **q** Torsional Stiffness (Newton per Meter)

- **q**shaft Torsional Stiffness of Shaft (Newton per Meter)
- **t**_p Time Period (Second)
- X Distance between Small Element and Fixed End (Millimeter)
- α Angular Acceleration (Radian per Square Second)
- **Transformation Transformation Transformation Transformation**
- **θ** Angular Displacement of Shaft (Radian)
- W Angular Velocity (Radian per Second)
- ω_f Angular Velocity of Free End (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Length in Millimeter (mm) Length Unit Conversion 🖒
- Measurement: Time in Second (s) • Time Unit Conversion
- Measurement: Pressure in Newton per Square Meter (N/m²) Pressure Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion 🕑
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion
- Measurement: Angular Velocity in Radian per Second (rad/s) • Angular Velocity Unit Conversion 🖸
- Measurement: Moment of Inertia in Kilogram Square Meter (kg·m²) Moment of Inertia Unit Conversion
- Measurement: Angular Acceleration in Radian per Square Second (rad/s²)

Angular Acceleration Unit Conversion 🖸

- Measurement: Second Moment of Area in Meter⁴ (m⁴)
 Second Moment of Area Unit Conversion
- Measurement: Stiffness Constant in Newton per Meter (N/m) Stiffness Constant Unit Conversion

16/16

Check other formula lists

Torsional Vibrations Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

12/5/2023 | 3:59:52 AM UTC

Please leave your feedback here ...

