

Analog Noise and Power Analysis Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Analog Noise and Power Analysis Formulas

Analog Noise and Power Analysis 🕑

8) Power Spectral Density of White Noise C
(A)
$$P_{dw} = [BoltZ] \cdot \frac{T}{2}$$

(C) $P_{dw} = [BoltZ] \cdot \frac{T}{2}$
(C) $P_{dw} = [BoltZ] \cdot \frac{363.74K}{2}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot T \cdot BW_n \cdot R_{ns}}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot T \cdot BW_n \cdot R_{ns}}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 363.74K \cdot 200Hz \cdot 1.23\Omega}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot T \cdot G \cdot BW_n}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot T \cdot G \cdot BW_n}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot T \cdot G \cdot BW_n}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 363.74K \cdot 60\% \cdot 200Hz}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 363.74K \cdot 60\% \cdot 200Hz}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 363.74K \cdot 60\% \cdot 200Hz}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 363.74K \cdot 60\% \cdot 200Hz}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 363.74K \cdot 60\% \cdot 200Hz}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 363.74K \cdot 60\% \cdot 200Hz}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 363.74K \cdot 60\% \cdot 200Hz}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 363.74K \cdot 60\% \cdot 200Hz}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 1.23\% \cdot 20.4}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 1.23\% \cdot 20.4}$
(C) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 1.23\% \cdot 20.4}$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 1.23\% \cdot 20.4}$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 1.23\% \cdot 20.4}$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot [BoltZ] \cdot 20.4} \cdot 20.4$
(D) $P_{ms} = \sqrt{4 \cdot$

 \bigcirc

5/9

Variables Used

- A_{sm} Amplitude of Message Signal
- BWen Effective Noise Bandwidth (Hertz)
- BW_n Noise Bandwidth (Hertz)
- D Deviation Ratio
- G Conductance (Mho)
- **i**o Reverse Saturation Current (Milliampere)
- irms RMS Thermal Noise Current (Milliampere)
- **i**shot Mean Square Shot Noise Current (Milliampere)
- **i_t** Total Current (Milliampere)
- k_p Phase Deviation Constant
- N_f Noise Factor
- Pdt Power Spectral Density of Thermal Noise (Watt Per Cubic Meter)
- Pdw Power Spectral Density of White Noise (Watt Per Cubic Meter)
- Pn Noise Power (Watt)
- Png Noise Power Gain
- Pni Noise Power at Input (Watt)
- Pno Noise Power at Output (Watt)
- **P**_s Signal Power (Watt)
- Psi Signal Power at Input (Watt)
- Pso Signal Power at Output (Watt)
- Ptn Thermal Noise Power (Watt)

6/9

- Rns Noise Resistance (Ohm)
- SNR Signal to Noise Ratio (Decibel)
- SNR_{am} SNR of AM System (Decibel)
- SNR_{fm} SNR of FM System (Decibel)
- SNR_{pm} SNR of PM System (Decibel)
- **T** Temperature (Kelvin)
- **T**₀ Room Temperature (Kelvin)
- Vrms RMS Noise Voltage (Millivolt)
- µ Modulation Index

Constants, Functions, Measurements used

- Constant: [BoltZ], 1.38064852E-23 Joule/Kelvin Boltzmann constant
- Constant: [Charge-e], 1.60217662E-19 Coulomb Charge of electron
- Function: log10, log10(Number) Common logarithm function (base 10)
- Function: **sqrt**, sqrt(Number) Square root function
- Measurement: Electric Current in Milliampere (mA) Electric Current Unit Conversion
- Measurement: **Temperature** in Kelvin (K) *Temperature Unit Conversion*
- Measurement: Power in Watt (W) Power Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Electric Conductance in Mho (♂) Electric Conductance Unit Conversion ☑
- Measurement: Electric Potential in Millivolt (mV) Electric Potential Unit Conversion
- Measurement: Sound in Decibel (dB) Sound Unit Conversion
- Measurement: Power Density in Watt Per Cubic Meter (W/m³) Power Density Unit Conversion

Check other formula lists

- Amplitude Modulation
 Characteristics Formulas
- Analog Noise and Power Analysis
 Sideband and Frequency Formulas
 Modulation Formulas
- Fundamentals of Analog
 Communications Formulas
 Sideband and Frequency
 Modulation Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/16/2024 | 6:40:05 PM UTC

Please leave your feedback here ...

