
calculatoratoz.com

unitsconverters.com

AC Power Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 AC Power Formulas

AC Power ©

1) Complex Power

Open Calculator
$f \mathrm{x}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$
ex $270.5199 \mathrm{VA}=\sqrt{(235 \mathrm{~W})^{2}+(134 \mathrm{VAR})^{2}}$
2) Complex Power given Power Factor
$f \mathrm{x}=\frac{\mathrm{P}}{\cos (\Phi)}$
Open Calculator
ex $271.3546 \mathrm{VA}=\frac{235 \mathrm{~W}}{\cos \left(30^{\circ}\right)}$
3) Power in Single-Phase AC Circuits
fx $\mathrm{P}=\mathrm{V} \cdot \mathrm{I} \cdot \cos (\Phi)$
Open Calculator
ex $236.4249 \mathrm{~W}=130 \mathrm{~V} \cdot 2.1 \mathrm{~A} \cdot \cos \left(30^{\circ}\right)$
4) Power in Single-Phase AC Circuits using Current
$f \mathbf{x}=\mathrm{I}^{2} \cdot \mathrm{R} \cdot \cos (\Phi)$
ex $229.1503 \mathrm{~W}=(2.1 \mathrm{~A})^{2} \cdot 60 \Omega \cdot \cos \left(30^{\circ}\right)$
5) Power in Single-Phase AC Circuits using Voltage
$\mathrm{fx} P=\frac{\mathrm{V}^{2} \cdot \cos (\Phi)}{\mathrm{R}}$
Open Calculator
ex $243.9305 \mathrm{~W}=\frac{(130 \mathrm{~V})^{2} \cdot \cos \left(30^{\circ}\right)}{60 \Omega}$
6) Power in Three-Phase AC Circuits using Phase Current
$f x \mathrm{P}=3 \cdot \mathrm{~V}_{\mathrm{ph}} \cdot \mathrm{I}_{\mathrm{ph}} \cdot \cos (\Phi)$
Open Calculator ©
ex $249.4153 \mathrm{~W}=3 \cdot 240 \mathrm{~V} \cdot 0.4 \mathrm{~A} \cdot \cos \left(30^{\circ}\right)$
7) Reactive Power
$f \times \mathrm{Q}=\mathrm{I} \cdot \mathrm{V} \cdot \sin (\Phi)$
Open Calculator
ex $136.5 \mathrm{VAR}=2.1 \mathrm{~A} \cdot 130 \mathrm{~V} \cdot \sin \left(30^{\circ}\right)$
8) Reactive Power using Line-to-Neutral Current
$\mathrm{f}_{\mathrm{x}} \mathrm{Q}=3 \cdot \mathrm{I}_{\mathrm{ln}} \cdot \mathrm{V}_{\mathrm{ln}} \cdot \sin (\Phi)$
Open Calculator
ex $134.355 \mathrm{VAR}=3 \cdot 1.3 \mathrm{~A} \cdot 68.9 \mathrm{~V} \cdot \sin \left(30^{\circ}\right)$
9) Reactive Power using RMS Voltage and Current
$\mathrm{fx}_{\mathrm{x}} \mathrm{Q}=\mathrm{V}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{rms}} \cdot \sin (\Phi)$
Open Calculator
ex $135.125 \mathrm{VAR}=57.5 \mathrm{~V} \cdot 4.7 \mathrm{~A} \cdot \sin \left(30^{\circ}\right)$
10) Real Power in AC Circuit 5
$f_{x} \mathrm{P}=\mathrm{V} \cdot \mathrm{I} \cdot \cos (\Phi)$
ex $236.4249 \mathrm{~W}=130 \mathrm{~V} \cdot 2.1 \mathrm{~A} \cdot \cos \left(30^{\circ}\right)$
11) Real Power using Line-to-Neutral Voltage
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}=3 \cdot \mathrm{I}_{\mathrm{ln}} \cdot \mathrm{V}_{\mathrm{ln}} \cdot \cos (\Phi)$
ex $232.7097 \mathrm{~W}=3 \cdot 1.3 \mathrm{~A} \cdot 68.9 \mathrm{~V} \cdot \cos \left(30^{\circ}\right)$
12) Real Power using RMS Voltage and Current
$\mathrm{fx} \mathrm{P}=\mathrm{I}_{\mathrm{rms}} \cdot \mathrm{V}_{\mathrm{rms}} \cdot \cos (\Phi)$
ex $234.0434 \mathrm{~W}=4.7 \mathrm{~A} \cdot 57.5 \mathrm{~V} \cdot \cos \left(30^{\circ}\right)$

Variables Used

- I Current (Ampere)
- In Line to Neutral Current (Ampere)
- I ${ }_{\text {ph }}$ Phase Current (Ampere)
- $I_{\text {rms }}$ Root Mean Square Current (Ampere)
- P Real Power (Watt)
- Q Reactive Power (Volt Ampere Reactive)
- R Resistance (Ohm)
- S Complex Power (Volt Ampere)
- V Voltage (Volt)
- $\mathbf{V}_{\text {In }}$ Line to Neutral Voltage (Volt)
- \mathbf{V}_{ph} Phase Voltage (Volt)
- $\mathrm{V}_{\text {rms }}$ Root Mean Square Voltage (Volt)
- Ф Phase Difference (Degree)

Constants, Functions, Measurements used

- Function: cos, cos(Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sin, $\sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

- Measurement: Power in Volt Ampere (VA), Watt (W), Volt Ampere Reactive (VAR)
Power Unit Conversion $\boxed{\Omega}$
- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Electric Resistance in Ohm (Ω)

Electric Resistance Unit Conversion

- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

Check other formula lists

- AC Circuit Design Formulas $\sqrt{\mathcal{L}}$
- AC Power Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/6/2024 | 9:44:53 AM UTC
Please leave your feedback here...

