

Design of Engine Valves Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

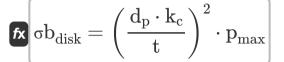
Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

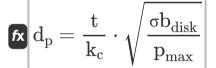
Please leave your feedback here...



List of 44 Design of Engine Valves Formulas

Design of Engine Valves &

Valve Disk


1) Bending Stress in Valve Disk

Open Calculator

$$\mathbf{ex}$$
 $52.89256\mathrm{N/mm^2} = \left(rac{40\mathrm{mm}\cdot0.5}{5.5\mathrm{mm}}
ight)^2\cdot4\mathrm{MPa}$

2) Diameter of Port given Thickness of Valve Disk

Open Calculator 🗗

$$ext{ex} \ 39.66106 ext{mm} = rac{5.5 ext{mm}}{0.5} \cdot \sqrt{rac{52 ext{N/mm}^2}{4 ext{MPa}}}$$

3) Maximum Thickness of Valve Disk at Edges

fx
$$t_{
m e} = 0.85 \cdot t$$

Open Calculator

$$\texttt{ex} \boxed{4.675 \text{mm} = 0.85 \cdot 5.5 \text{mm}}$$

4) Minimum Thickness of Valve Disk at Edges

fx $t_{
m e} = 0.75 \cdot {
m t}$

Open Calculator 🚰

 $4.125 \mathrm{mm} = 0.75 \cdot 5.5 \mathrm{mm}$

5) Thickness of Valve Disk

 $t = k_c \cdot d_p \cdot \sqrt{rac{p_{max}}{\sigma b_{disk}}}$

Open Calculator 🗗

 $\mathbf{ex} \left[5.547002 \mathrm{mm} = 0.5 \cdot 40 \mathrm{mm} \cdot \sqrt{\frac{4 \mathrm{MPa}}{52 \mathrm{N/mm^2}}}
ight]$

6) Thickness of Valve Disk given Projected Width of Valve Seat

 $t = k_{c} \cdot rac{w}{0.06} \cdot \sqrt{rac{p_{max}}{\sigma b_{disk}}}$

Open Calculator 🚰

7) Thickness of Valve Disk Made of Cast Iron

 $oxed{ex} 6.933752 \mathrm{mm} = 0.5 \cdot rac{3 \mathrm{mm}}{0.06} \cdot \sqrt{rac{4 \mathrm{MPa}}{52 \mathrm{N/mm^2}}}$

$$t = 0.54 \cdot d_p \cdot \sqrt{rac{p_{max}}{\sigma b_{disk}}}$$

Open Calculator

 $= 5.990762 ext{mm} = 0.54 \cdot 40 ext{mm} \cdot \sqrt{rac{4 ext{MPa}}{52 ext{N/mm}^2}}$

8) Thickness of Valve Disk Made of Steel

 $t = 0.42 \cdot d_p \cdot \sqrt{rac{p_{max}}{\sigma b_{disk}}}$

Open Calculator

 $= 4.659482 ext{mm} = 0.42 \cdot 40 ext{mm} \cdot \sqrt{\frac{4 ext{MPa}}{52 ext{N/mm}^2}}$

Valve Head

9) Diameter of Port given Diameter of Valve Head and Projected Width of Valve Seat

fx $d_{
m p}=d_{
m v}-2\cdot {
m w}$

Open Calculator 🗗

 $44\text{mm} = 50\text{mm} - 2 \cdot 3\text{mm}$

10) Diameter of Port given Projected Width of Valve Seat

 $\mathbf{f}\mathbf{x} egin{aligned} \mathbf{d}_\mathrm{p} = rac{\mathrm{w}}{0.06} \end{aligned}$

Open Calculator 🚰

 $= 50 \text{mm} = \frac{3 \text{mm}}{0.06}$

11) Diameter of Valve Head given Diameter of Port and Projected Width of Valve Seat

fx $d_{
m v} = d_{
m p} + 2 \cdot {
m w}$

Open Calculator

 $\texttt{ex} \ 46 \text{mm} = 40 \text{mm} + 2 \cdot 3 \text{mm}$

12) Diameter of Valve Head given Load on Exhaust Valve and Back

 $\mathbf{f}_{\mathbf{v}} = \sqrt{rac{4 \cdot \mathrm{P_g}}{\pi \cdot \mathrm{P_{back}}}}$

Open Calculator

 $= \sqrt{\frac{4 \cdot 1680 \text{N}}{\pi \cdot 0.8 \text{MPs}}}$

13) Diameter of Valve Head given Port Diameter

fx $d_{
m v} = 1.12 \cdot d_{
m p}$

Open Calculator 🚰

 $| 44.8 \mathrm{mm} = 1.12 \cdot 40 \mathrm{mm}$

14) Diameter of Valve Head given Projected Width of Valve Seat

fx $d_{
m v}=18.666\cdot{
m w}$

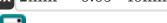
Open Calculator

 $= 18.666 \cdot 3$ mm

15) Maximum Projected Width of Valve Seat given Port Diameter

fx $w = 0.07 \cdot d_p$

Open Calculator


 $= 2.8 \text{mm} = 0.07 \cdot 40 \text{mm}$

16) Minimum Projected Width of Valve Seat given Port Diameter

fx $w = 0.05 \cdot d_p$

Open Calculator

 $2mm = 0.05 \cdot 40mm$

17) Port Diameter given Diameter of Valve Head

 $d_p = \frac{d_v}{1.12}$

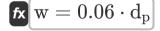
Open Calculator

 $= 44.64286 \text{mm} = \frac{50 \text{mm}}{1.12}$

18) Projected Width of Valve Seat given Diameter of Port and Diameter of Valve Head

 $\mathbf{fx} \mathbf{w} = rac{\mathrm{d_v} - \mathrm{d_p}}{2}$

Open Calculator


extstyle ext

19) Projected Width of Valve Seat given Diameter of Valve Head

fx $w=rac{d_{
m v}}{18.666}$

Open Calculator

20) Projected Width of Valve Seat given Port Diameter

Open Calculator

 $2.4 \mathrm{mm} = 0.06 \cdot 40 \mathrm{mm}$

Open Calculator

Open Calculator

Valve Lift 🗗

 $\mathbf{f}\mathbf{x} \left[\mathrm{d_p} = 4 \cdot \mathrm{h_{max}} \cdot \mathrm{cos}(lpha)
ight]$

21) Diameter of Port given Maximum Lift of Valve

 $\alpha)$

 $\texttt{ex} \boxed{31.1127 \text{mm} = 4 \cdot 11 \text{mm} \cdot \cos(45°)}$

22) Force Required to Lift Engine Valve

fx $P_2 = \mathbf{k} \cdot \mathbf{h}_{max}$

23) Lift of Engine Valve

 $h_{max} = rac{P_2}{k}$

Open Calculator 🗗

Open Calculator

 $oxed{26.88172 ext{mm}} = rac{250 ext{N}}{9.3 ext{N/mm}}$

24) Maximum Lift of Valve for Flat Headed Valves

 $extstyle h_{ ext{max}} = rac{ ext{d}_{ ext{p}}}{4}$

5

 $\boxed{10\text{mm} = \frac{40\text{mm}}{4}}$

25) Maximum Lift of Valve given Diameter of Port and Valve Seat Angle 💪

 $\mathbf{f}_{\mathbf{k}} egin{aligned} \mathbf{h}_{\mathrm{max}} &= rac{\mathbf{d}_{\mathrm{p}}}{4 \cdot \cos(lpha)} \end{aligned}$

Open Calculator 🗗

ex 14.14214mm = $\frac{40$ mm $4 \cdot \cos(45^{\circ})$

26) Valve Seat Angle given Maximum Lift of Valve

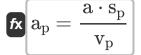
 $lpha = \overline{ rccosigg(rac{\mathrm{d_p}}{4\cdot\mathrm{h_{max}}}igg)}$

Open Calculator 🚰

 $oxed{ex} 24.61998\degree = rccosigg(rac{40 \mathrm{mm}}{4 \cdot 11 \mathrm{mm}}igg)$

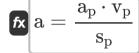
Valve Port

27) Acceleration of Exhaust Valve


 $\mathbf{f}_{\mathbf{x}} = rac{\mathrm{Pa}_{\mathrm{valve}}}{\mathrm{m}}$

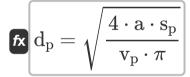
Open Calculator 🗗

 $m ex = 255.5556m/s^2 = rac{115N}{0.45kg}$


28) Area of IC Engine Port given Cross-Section Area of Piston

Open Calculator 🚰

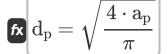
 $extbf{ex} 1318.5 ext{mm}^2 = rac{5860 ext{mm}^2 \cdot 4.5 ext{m/s}}{20 ext{m/s}}$


29) Cross-Section Area of IC Engine Piston given Area of Port

Open Calculator

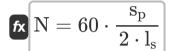
 $oxed{ex} 5511.111 \mathrm{mm^2} = rac{1240 \mathrm{mm^2 \cdot 20 m/s}}{4.5 \mathrm{m/s}}$

30) Diameter of IC Engine Port

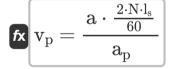


Open Calculator

 $ag{40.97275 ext{mm}} = \sqrt{rac{4\cdot5860 ext{mm}^2\cdot4.5 ext{m/s}}{20 ext{m/s}\cdot\pi}}$


31) Diameter of IC Engine Port given Area of Port

Open Calculator


ex
$$39.73433 \mathrm{mm} = \sqrt{\frac{4 \cdot 1240 \mathrm{mm}^2}{\pi}}$$

32) Engine Speed given Mean Velocity of Piston and Stroke Length

Open Calculator

33) Mean Velocity of Gas through IC Engine Port given Engine Speed, Stroke, Area of Piston and Port

Open Calculator

$$ext{ex} = rac{5860 ext{mm}^2 \cdot rac{2 \cdot 500 \cdot 275 ext{mm}}{60}}{1240 ext{mm}^2}$$

34) Mean Velocity of Gas through IC Engine Port given Velocity of Piston

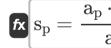
€.

$$\mathbf{v}_{\mathrm{p}} = rac{\mathbf{a} \cdot \mathbf{s}_{\mathrm{p}}}{\mathbf{a}_{\mathrm{p}}}$$

Open Calculator

$$\mathbf{ex} = 21.26613 \mathrm{m/s} = \frac{5860 \mathrm{mm^2 \cdot 4.5 m/s}}{1240 \mathrm{mm^2}}$$

35) Mean Velocity of IC Engine Piston given Engine Speed and Stroke Length



$$=rac{2\cdot\mathrm{N}\cdot\mathrm{l_s}}{60}$$

Open Calculator

$$= \frac{2 \cdot 500 \cdot 275 \text{mm}}{60}$$

$$oxed{4.232082 ext{m/s}} = rac{1240 ext{mm}^2 \cdot 20 ext{m/s}}{5860 ext{mm}^2}$$

37) Stroke Length of Piston given Mean Velocity of Piston and Engine Speed

 $\mathbf{f}_{\mathrm{s}} = rac{60 \cdot \mathrm{s_p}}{2 \cdot \mathrm{N}}$

Open Calculator 🚰

 $\boxed{\texttt{ex}} 270 \text{mm} = \frac{60 \cdot 4.5 \text{m/s}}{2 \cdot 500}$

Valve Stem

38) Diameter of Port given Diameter of Valve Stem

 $\mathrm{d}_\mathrm{p} = rac{\mathrm{d}_\mathrm{s}}{1.5 \cdot \left(1 - rac{\sigma_\mathrm{t} \cdot \mathrm{t}^2}{1.4 \cdot \mathrm{P}_\mathrm{sp}}
ight)}$

Open Calculator 🗗

ex 40.73903mm = $\frac{15$ mm $1.5 \cdot \left(1 - \frac{2.2 \text{N/mm}^2 \cdot (5.5 \text{mm})^2}{1.4 \cdot 63 \text{N}}\right)$

39) Diameter of Valve Stem

 $\left|\mathbf{f}_{\mathbf{k}}
ight|\mathbf{d}_{\mathrm{s}}=1.5\cdot\mathbf{d}_{\mathrm{p}}\cdot\left(1-rac{\sigma_{\mathrm{t}}\cdot\mathbf{t}^{2}}{1.4\cdot\mathrm{P_{sn}}}
ight)
ight|$

Open Calculator 🗗

 $\boxed{ 14.72789 \mathrm{mm} = 1.5 \cdot 40 \mathrm{mm} \cdot \left(1 - \frac{2.2 \mathrm{N/mm^2} \cdot (5.5 \mathrm{mm})^2}{1.4 \cdot 63 \mathrm{N}} \right) }$

40) Maximum Diameter of Valve Stem

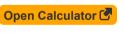
 $\left|\mathbf{d}_{\mathrm{s}}
ight| \mathbf{d}_{\mathrm{s}} = rac{\mathrm{d}_{\mathrm{p}}}{\mathrm{g}} + 11$

Open Calculator

 $\boxed{\textbf{ex} 16\text{mm} = \frac{40\text{mm}}{8} + 11}$

41) Minimum Diameter of Valve Stem

 $d_{
m s}=rac{{
m d}_{
m p}}{8}+6.35$


Open Calculator

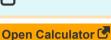
= $\frac{40 \mathrm{mm}}{8} + 6.35$

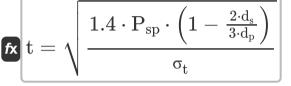
42) Spring Force on Valve when Seated

 $extbf{F}_{ ext{sp}} = rac{rac{\sigma_{ ext{t}} \cdot ext{t}^2}{1 - rac{2 \cdot ext{d}_{ ext{s}}}{3 \cdot ext{d}_{ ext{p}}}}}{1.4}$

 $ext{ex} 63.38095 ext{N} = rac{rac{2.2 ext{N/mm}^2 \cdot (5.5 ext{mm})^2}{1 - rac{2 \cdot 15 ext{mm}}{3 \cdot 40 ext{mm}}}}{1.4}$

43) Tensile Stress in Valve Stem due to Spring Force on Valve




 $\sigma_{
m t} = 1.4 \cdot rac{{
m P}_{
m sp}}{{
m t}^2} \cdot \left(1 - rac{2 \cdot {
m d}_{
m s}}{3 \cdot {
m d}_{
m p}}
ight)$

Open Calculator 2

 $ext{ex} \left[2.186777 ext{N/mm}^2 = 1.4 \cdot rac{63 ext{N}}{\left(5.5 ext{mm}
ight)^2} \cdot \left(1 - rac{2 \cdot 15 ext{mm}}{3 \cdot 40 ext{mm}}
ight)
ight]$

44) Thickness of Valve Disk given Force of Spring on Valve

$$extbf{ex} 5.483446 ext{mm} = \sqrt{rac{1.4 \cdot 63 ext{N} \cdot \left(1 - rac{2 \cdot 15 ext{mm}}{3 \cdot 40 ext{mm}}
ight)}{2.2 ext{N/mm}^2}}$$

Variables Used

- a Cross Section Area of Piston (Square Millimeter)
- a_p Area of Port (Square Millimeter)
- a_v Acceleration of Valve (Meter per Square Second)
- d_p Diameter of Port (Millimeter)
- d_S Diameter of Valve Stem (Millimeter)
- **d**_v Diameter of Valve Head (Millimeter)
- h_{max} Lift of Valve (Millimeter)
- **k** Stiffness of Valve Spring (Newton per Millimeter)
- k_c Material Constant
- I_S Stroke Length (Millimeter)
- m Mass of Valve (Kilogram)
- N Engine Speed in rpm
- P₂ Force to Lift Engine Valve (Newton)
- P_{hack} Back Pressure on Engine Valve (Megapascal)
- P_q Gas Load on Exhaust Valve (Newton)
- p_{max} Maximum Gas Pressure inside Cylinder (Megapascal)
- P_{sp} Spring Force on Seated Valve (Newton)
- Pavalve Inertia Force on Valve (Newton)
- **S**_D Mean Piston Speed (Meter per Second)
- t Thickness of Valve Disk (Millimeter)
- t_e Thickness of Valve Disk at Edges (Millimeter)

- V_p Velocity of Gas through Port (Meter per Second)
- **w** Projected Width of Valve Seat (Millimeter)
- α Valve Seat Angle (Degree)
- σ_t Tensile Stress in Valve Stem (Newton per Square Millimeter)
- σb_{disk} Bending Stress in Valve Disk (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: arccos, arccos(Number)

 Inverse trigonometric cosine function
- Function: cos, cos(Angle)

 Trigonometric cosine function
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Area in Square Millimeter (mm²)
 Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)

 Acceleration Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Stiffness Constant in Newton per Millimeter (N/mm)
 Stiffness Constant Unit Conversion

• Measurement: Stress in Newton per Square Millimeter (N/mm²)

Stress Unit Conversion

Check other formula lists

- Design of Engine Valves
 Design of Valve Spring Formulas
 - Formulas (
- Design of Push Rod Formulas Engine Cylinder Formulas •
- Design of Rocker Arm Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/22/2023 | 2:55:24 PM UTC

Please leave your feedback here...

