

Design of Helical Gears Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 55 Design of Helical Gears Formulas

Design of Helical Gears 🗗

Core Design Parameters

1) Actual Number of Teeth on Gear given Virtual Number of Teeth

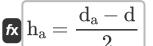
$$\mathbf{f} \mathbf{x} \left[\mathbf{z} = (\cos(\psi))^3 \cdot \mathbf{z}' \right]$$

Open Calculator 🗗

2) Addendum Circle Diameter of Gear

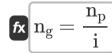
$$\left| \mathbf{f}_{\mathbf{a}}
ight| \mathrm{d}_{\mathrm{a}} = \mathrm{m}_{\mathrm{n}} \cdot \left(\left(rac{\mathrm{z}}{\mathrm{\cos}(\psi)}
ight) + 2
ight)
ight|$$

Open Calculator 🛂


$$extbf{ex} \left[128.4749 ext{mm} = 3 ext{mm} \cdot \left(\left(rac{37}{\cos(25°)}
ight) + 2
ight)$$

3) Addendum Circle Diameter of Gear given Pitch Circle Diameter

fx
$$d_{
m a}=2\cdot h_{
m a}+d$$

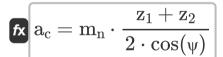

4) Addendum of Gear given Addendum Circle Diameter

Open Calculator

 $\boxed{10\text{mm} = \frac{138\text{mm} - 118\text{mm}}{2}}$

5) Angular Velocity of Gear given Speed Ratio

Open Calculator


 $8.272727 {
m rad/s} = rac{18.2 {
m rad/s}}{2.2}$

6) Angular Velocity of Pinion given Speed Ratio

fx $\left[\mathrm{n_{p}} = \mathrm{i} \cdot \mathrm{n_{g}}
ight]$

Open Calculator 🗗

7) Center to Center distance between Two Gears

 $= 2 \times \left[99.30401 \mathrm{mm} = 3 \mathrm{mm} \cdot \frac{18 + 42}{2 \cdot \cos(25^\circ)} \right]$

fx $ext{d}_{ ext{f}} = ext{d} - 2 \cdot ext{d}_{ ext{h}}$

8) Dedendum Circle Diameter of Gear given Pitch Circle Diameter 🗗

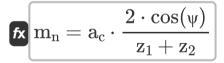
Open Calculator 2

 $= 108 \text{mm} = 118 \text{mm} - 2 \cdot 5 \text{mm}$

9) Normal Module of Helical Gear

Open Calculator $\mathbf{f}\mathbf{x} \left[\mathbf{m}_{\mathrm{n}} = \mathbf{m} \cdot \cos(\mathbf{y})
ight]$

 $\texttt{ex} \ 3.081446 \text{mm} = 3.4 \text{mm} \cdot \cos(25\degree)$


10) Normal Module of Helical Gear given Addendum Circle Diameter 🗗

fx $m_{
m n}=rac{d_{
m a}}{rac{z}{\cos(\omega)}+2}$

Open Calculator

= $\frac{3.222418 \mathrm{mm}}{\frac{37}{\cos(25^{\circ})} + 2}$

11) Normal Module of Helical Gear given Center to Center Distance between Two Gears 🗗

$$2.999879 \mathrm{mm} = 99.3 \mathrm{mm} \cdot \frac{2 \cdot \cos(25°)}{18 + 42}$$

12) Normal Module of Helical Gear given Pitch Circle Diameter

fx $\mathbf{m}_{\mathrm{n}} = \mathbf{d} \cdot rac{\cos(\psi)}{\mathbf{z}}$

Open Calculator 🚰

 $2.890387 \mathrm{mm} = 118 \mathrm{mm} \cdot \frac{\cos(25°)}{37}$

13) Normal Module of Helical Gear given Virtual Number of Teeth

 $\mathbf{f}\mathbf{x} | m_n = rac{d}{z^{,}} \cdot \left(\cos(\psi)^2
ight)$

Open Calculator

ex 1.794898mm $= \frac{118$ mm $}{54} \cdot (\cos(25^{\circ})^{2})$

14) Number of Teeth on First Gear given Center to Center Distance between Two Gears

 $\mathbf{z}_1 = \mathrm{a_c} \cdot rac{2 \cdot \mathrm{cos}(\psi)}{\mathrm{m_r}} - \mathrm{z}_2$

Open Calculator

 $ext{ex} 17.99758 = 99.3 ext{mm} \cdot rac{2 \cdot \cos(25°)}{3 ext{mm}} - 42$

15) Number of Teeth on Gear given Addendum Circle Diameter

 $\mathbf{z} = \left(rac{d_a}{m_n} - 2
ight) \cdot \cos(\psi)$

Open Calculator 🗗

extstyle ext

16) Number of Teeth on Gear given Pitch Circle Diameter

 $\mathbf{f}\mathbf{z} = \mathrm{d} \cdot rac{\cos(\psi)}{\mathrm{m_n}}$

Open Calculator 🗗

 $ext{ex} 35.64811 = 118 ext{mm} \cdot rac{\cos(25°)}{3 ext{mm}}$

17) Number of Teeth on Helical Gear given Speed Ratio for Helical Gears

 $\textbf{fx} \mathbf{z} = \mathbf{Z}_p \cdot \mathbf{i}$

Open Calculator

 $\boxed{\textbf{ex}} \boxed{44 = 20 \cdot 2.2}$

18) Number of Teeth on Pinion given Speed Ratio

fx $Z_{
m p}=rac{
m z}{
m i}$

Open Calculator 🖸

$= 16.81818 = \frac{37}{2.2}$

19) Number of Teeth on Second Helical Gear given Center to Center Distance between Two Gears

 $\mathbf{z}_2 = \mathrm{a_c} \cdot rac{2 \cdot \mathrm{cos}(\psi)}{\mathrm{m_n}} - \mathrm{z_1}$

$$41.99758 = 99.3 \mathrm{mm} \cdot rac{2 \cdot \cos(25°)}{3 \mathrm{mm}} - 18$$

20) Pitch Circle Diameter of Gear given Addendum Circle Diameter 🗗

fx $d = d_{
m a} - 2 \cdot h_{
m a}$

fx $\mathrm{d} = \mathrm{d_f} + 2 \cdot \mathrm{d_h}$

Open Calculator 2

 $= 130 \text{mm} = 138 \text{mm} - 2 \cdot 4 \text{mm}$

21) Pitch Circle Diameter of Gear given Dedendum Circle Diameter 🗗

Open Calculator 2

ex $136 \text{mm} = 126 \text{mm} + 2 \cdot 5 \text{mm}$

22) Pitch Circle Diameter of Gear given Radius of Curvature at Point 🛂

fx $d = 2 \cdot r' \cdot (\cos(\psi))^2$

Open Calculator

 $= 118.2807 \mathrm{mm} = 2 \cdot 72 \mathrm{mm} \cdot (\cos(25^{\circ}))^{2}$

23) Pitch Circle Diameter of Helical Gear

 $\mathbf{f}\mathbf{z} \, \mathrm{d} = \mathbf{z} \cdot rac{\mathrm{m_n}}{\mathrm{cos}(\psi)}$

Open Calculator

 $= 122.4749 \text{mm} = 37 \cdot \frac{3 \text{mm}}{\cos(25^\circ)}$

24) Speed Ratio for Helical Gears 🚰

Open Calculator 🖸

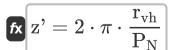
 $2.219512 = \frac{18.2 \text{rad/s}}{8.2 \text{rad/s}}$

25) Transverse Module of Helical Gear given Normal Module

 $\boxed{\mathbf{fx}}\mathbf{m} = \frac{m_n}{\cos(\psi)}$

Open Calculator

 $\boxed{\textbf{ex} \ 3.310134 \text{mm} = \frac{3 \text{mm}}{\cos(25°)}}$


26) Transverse Module of Helical Gear given Transverse Diametrical Pitch

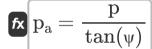
Open Calculator


= $3.448276 \mathrm{mm} = rac{1}{0.29 \mathrm{mm}^{-1}}$

27) Virtual Number of Teeth on Helical Gear

Open Calculator 2

 $\boxed{\textbf{ex} \left[20.94395 = 2 \cdot \pi \cdot \frac{32 \text{mm}}{9.6 \text{mm}} \right]}$


28) Virtual Number of Teeth on Helical Gear given Actual Number of Teeth

fx
$$z' = rac{z}{\left(\cos(\psi)
ight)^3}$$

Open Calculator

Helix Geometry

29) Axial Pitch of Helical Gear given Helix Angle

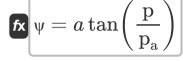
Open Calculator

$$=$$
 22.90333 mm $=$ $\frac{10.68$ mm $}{\tan(25\degree)}$

30) Helix Angle of Helical Gear given Actual and Virtual Number of Teeth

$$\psi = a \cos \left(\left(rac{\mathrm{z}}{\mathrm{z}'}
ight)^{rac{1}{3}}
ight)$$

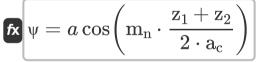
$$28.16458° = a\cos{\left(\left(\frac{37}{54}\right)^{\frac{1}{3}}\right)}$$


31) Helix Angle of Helical Gear given Addendum Circle Diameter 🗗

 $\psi = a \cos \left(rac{\mathrm{z}}{rac{\mathrm{d_a}}{\mathrm{m_n}}-2}
ight)$

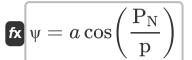
Open Calculator 🗗

 $22.76376° = a \cos \left(\frac{37}{\frac{138 \text{mm}}{3 \text{mm}} - 2} \right)$


32) Helix Angle of Helical Gear given Axial Pitch

Open Calculator

 $extbf{ex} \left[25.59087^{\circ} = a an \left(rac{10.68 ext{mm}}{22.3 ext{mm}}
ight)
ight]$


33) Helix Angle of Helical Gear given Center to Center Distance between Two Gears

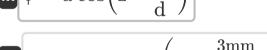
$$\mathbf{ex} \left[24.99503 \, \mathrm{^\circ} = a \cos \left(3 \mathrm{mm} \cdot rac{18 + 42}{2 \cdot 99.3 \mathrm{mm}}
ight)
ight]$$

34) Helix Angle of Helical Gear given Normal Circular Pitch

Open Calculator 🚰

 $25.98923^{\circ} = a \cos \left(rac{9.6 ext{mm}}{10.68 ext{mm}}
ight)$

35) Helix Angle of Helical Gear given Normal Module



Open Calculator

 $oxed{ex} 28.07249^\circ = a \cosigg(rac{3\mathrm{mm}}{3.4\mathrm{mm}}igg)$

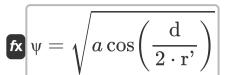
fx $\psi = a \cos \left(\mathbf{z} \cdot \frac{\mathbf{m_n}}{\mathbf{J}} \right)$

36) Helix Angle of Helical Gear given Pitch Circle Diameter

Open Calculator 🖸

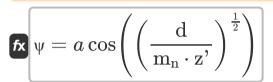
 $oxed{ex} 19.83427^{\circ} = a \cosigg(37 \cdot rac{3 ext{mm}}{118 ext{mm}}igg)$

37) Helix Angle of Helical Gear given Pressure Angle


$$\psi = a \cos igg(rac{ an(lpha_{
m n})}{ an(lpha)} igg)$$

Open Calculator 🗗

 $extbf{ex} 25.07509 \degree = a \cos igg(rac{ an(20.1 \degree)}{ an(22 \degree)} igg)$



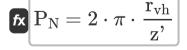
38) Helix Angle of Helical Gear given Radius of Curvature at Point 🗗

Open Calculator 🗗

39) Helix Angle of Helical Gear given Virtual Number of Teeth

Open Calculator

 $\mathbf{ex} \ 31.40991° = a \cos \left(\left(\frac{118 \mathrm{mm}}{3 \mathrm{mm} \cdot 54} \right)^{\frac{1}{2}} \right)$


40) Normal Circular Pitch of Helical Gear 🖸

fx
$$P_{
m N} = {
m p} \cdot {
m cos}({
m \psi})$$

Open Calculator 🖸

 $9.679367 \mathrm{mm} = 10.68 \mathrm{mm} \cdot \cos(25^{\circ})$

41) Normal Circular Pitch of Helical Gear given Virtual Number of Teeth

Open Calculator

 $\boxed{\textbf{ex} \ 3.723369 \text{mm} = 2 \cdot \pi \cdot \frac{32 \text{mm}}{54}}$

42) Normal Pressure Angle of Helical Gear given Helix Angle

 $a_{
m n} = a \tan(\tan(\alpha) \cdot \cos(\psi))$

Open Calculator 2

Open Calculator 2

Open Calculator G

 $\mathbf{ex} \ 20.11132^{\circ} = a \tan(\tan(22^{\circ}) \cdot \cos(25^{\circ}))$

43) Pitch Circular Diameter of Gear given Radius of Curvature

fx $d'=2\cdot r'$ Open Calculator

44) Pitch Circular Diameter of Gear given Virtual Gear

fx $d = 2 \cdot r' \cdot (\cos(\psi))^2$

 $= 118.2807 \text{mm} = 2 \cdot 72 \text{mm} \cdot (\cos(25^{\circ}))^2$

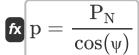
45) Pitch Circular Diameter of Gear given Virtual Number of Teeth

 $\mathbf{f} \mathbf{z} \, \mathrm{d} = \mathrm{m_n} \cdot \mathbf{z}' \cdot \left(\mathrm{cos}(\mathbf{y})^2 \right)$

 $\texttt{ex} \ 133.0658 \texttt{mm} = 3 \texttt{mm} \cdot 54 \cdot \left(\cos(25°)^2\right)$

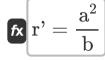
46) Pitch of Helical Gear given Axial Pitch

fx $p = p_a \cdot tan(\psi)$

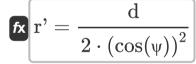

Open Calculator

 $= 10.39866 \text{mm} = 22.3 \text{mm} \cdot \tan(25^{\circ})$

47) Pitch of Helical Gear given Normal Circular Pitch

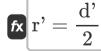


Open Calculator 🖸


Open Calculator

ex $10.59243 \mathrm{mm} = \frac{9.6 \mathrm{mm}}{\cos(25°)}$

48) Radius of Curvature at Point on Helical Gear

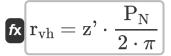

49) Radius of Curvature at Point on Virtual Gear

Open Calculator

 $71.82913 \text{mm} = \frac{118 \text{mm}}{2 \cdot (\cos(25^\circ))^2}$

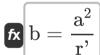
50) Radius of Curvature of Virtual Gear given Pitch Circular Diameter

Diameter
Open Calculator


 $\boxed{71.5 \text{mm} = \frac{143 \text{mm}}{2}}$

51) Radius of Curvature of Virtual Gear given Virtual Number of Teeth

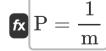
Open Calculator


 $82.50592 ext{mm} = 54 \cdot rac{9.6 ext{mm}}{2 \cdot \pi}$

52) Semi Major Axis of Elliptical Profile given Radius of Curvature at Point

fx $a = \sqrt{r' \cdot b}$

Open Calculator


53) Semi Minor Axis of Elliptical Profile given Radius of Curvature at Point

Open Calculator G

= $5.28125 \mathrm{mm} = rac{(19.5 \mathrm{mm})^2}{72 \mathrm{mm}}$

54) Transverse Diametrical Pitch of Helical Gear given Transverse Module

$$0.294118 \mathrm{mm}^{-1} = rac{1}{3.4 \mathrm{mm}}$$

55) Transverse Pressure Angle of Helical Gear given Helix Angle 🗗

$$lpha = a anigg(rac{ an(lpha_{
m n})}{\cos(\psi)}igg)$$

$$oxed{ex} 21.98782^\circ = a anigg(rac{ an(20.1^\circ)}{\cos(25^\circ)}igg)$$

Variables Used

- a Semi Major Axis of Helical Gear Teeth (Millimeter)
- a_c Center to Center Distance of Helical Gears (Millimeter)
- **b** Semi Minor Axis of Helical Gear Teeth (Millimeter)
- **d** Diameter of Pitch Circle of Helical Gear (Millimeter)
- d' Pitch Circular Diameter of Helical Virtual Gear (Millimeter)
- da Addendum Circle Diameter of Helical Gear (Millimeter)
- d_f Dedendum Circle Diameter of Helical Gear (Millimeter)
- d_h Dedendum of Helical Gear (Millimeter)
- **h**_a Addendum of Helical Gear (Millimeter)
- i Helical Gear Speed Ratio
- m Transverse Module of Helical Gear (Millimeter)
- m_n Normal Module of Helical Gear (Millimeter)
- n_q Speed of Helical Gear (Radian per Second)
- n_p Speed of Pinion Helical Gear (Radian per Second)
- **p** Pitch of Helical Gear (Millimeter)
- P Transverse Diametrical Pitch of Helical Gear (1 per Millimeter)
- **p**_a Axial Pitch of Helical Gear (Millimeter)
- P_N Normal Circular Pitch of Helical Gear (Millimeter)
- r' Radius of Curvature of Helical Gear (Millimeter)
- r_{vh} Virtual Pitch Circle Radius for Helical Gear (Millimeter)
- Z Number of Teeth on Helical Gear
- z' Virtual Number of Teeth on Helical Gear

- Z₁ Number of Teeth on 1st Helical Gear
- Z₂ Number of Teeth on 2nd Helical Gear
- Z_p Number of Teeth on Helical Pinion
- α Transverse Pressure Angle of Helical Gear (Degree)
- α_n Normal Pressure Angle of Helical Gear (Degree)
- ψ Helix Angle of Helical Gear (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: acos, acos(Number)

 The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Function: atan, atan(Number)
 Inverse tan is used to calculate the angle by applying the tangent ratio of
 the angle, which is the opposite side divided by the adjacent side of the
 right triangle.
- Function: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle)
 The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Angular Velocity in Radian per Second (rad/s)
 Angular Velocity Unit Conversion

• Measurement: Reciprocal Length in 1 per Millimeter (mm⁻¹)

Reciprocal Length Unit Conversion

Check other formula lists

Design of Bevel Gears
 Formulas

 Design of Helical Gears Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/1/2024 | 9:02:00 AM UTC

Please leave your feedback here...

